

Data Engineering
with Python

Work with massive datasets to design data models
and automate data pipelines using Python

Paul Crickard

BIRMINGHAM—MUMBAI

Data Engineering with Python
Copyright © 2020 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing or its dealers
and distributors, will be held liable for any damages caused or alleged to have been caused
directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

Commissioning Editor: Sunith Shetty

Acquisition Editor: Reshma Raman

Senior Editor: Roshan Kumar

Content Development Editor: Athikho Sapuni Rishana

Technical Editor: Manikandan Kurup

Copy Editor: Safis Editing

Project Coordinator: Aishwarya Mohan

Proofreader: Safis Editing

Indexer: Tejal Daruwale Soni

Production Designer: Alishon Mendonca

First published: October 2020

Production reference: 1231020

Published by Packt Publishing Ltd.

Livery Place

35 Livery Street

Birmingham

B3 2PB, UK.

ISBN 978-1-83921-418-9

www.packt.com

http://www.packt.com

Packt.com

Subscribe to our online digital library for full access to over 7,000 books and videos, as
well as industry leading tools to help you plan your personal development and advance
your career. For more information, please visit our website.

Why subscribe?
•	 Spend less time learning and more time coding with practical eBooks and videos

from over 4,000 industry professionals

•	 Improve your learning with Skill Plans built especially for you

•	 Get a free eBook or video every month

•	 Fully searchable for easy access to vital information

•	 Copy and paste, print, and bookmark content

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at packt.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
customercare@packtpub.com for more details.

At www.packt.com, you can also read a collection of free technical articles, sign up for
a range of free newsletters, and receive exclusive discounts and offers on Packt books and
eBooks.

http://Packt.com
http://packt.com
http://www.packt.com

Contributors

About the author
Paul Crickard is the author of Leaflet.js Essentials and co-author of Mastering Geospatial
Analysis with Python, and is also the Chief Information Officer at the Second Judicial
District Attorney’s Office in Albuquerque, New Mexico.

With a master’s degree in political science and a background in community and regional
planning, he combines rigorous social science theory and techniques to technology
projects. He has presented at the New Mexico Big Data and Analytics Summit and the
ExperienceIT NM Conference. He has given talks on data to the New Mexico Big Data
Working Group, Sandia National Labs, and the New Mexico Geographic Information
Council.

About the reviewers
Stefan Marwah has enjoyed programming for over ten years, which led him to undertake
a bachelor’s degree in computer science from the reputable Monash University. During
his time at the university, he built a mobile application that detected if an elderly person
had Alzheimer’s disease with help of natural language processing, speech recognition,
and neural networks, which secured him an award from Microsoft. He has experience in
both engineering and analytical roles that are rooted in his passion for leveraging data
and artificial intelligence to make impactful decisions within different organizations.
He currently works as a data engineer and also teaches part-time on topics around data
science at Step Function Coaching.

Andre Sionek is a data engineer at Gousto, in London. He started his career by founding
his own company, Polyteck, a free science and technology magazine for university
students. But he only jumped into the world of data and analytics during an internship at
the collections department of a Brazilian bank. He also worked with credit modeling for
a large cosmetics group and for start-ups before moving to London. He regularly teaches
data engineering courses, focusing on infrastructure as code and productionization. He
also writes about data for his blog and competes on Kaggle sometimes.

Miles Obare is a software engineer at Microsoft in the Azure team. He is currently
building tools that enable customers to migrate their server workloads to the cloud.
He also builds real-time, scalable backend systems and data pipelines for enterprise
customers. Formerly, he worked as a data engineer for a financial start-up, where his
role involved developing and deploying data pipelines and machine learning models to
production. His areas of expertise include distributed systems, computer architecture, and
data engineering. He holds a bachelor’s degree in electrical and computer engineering
from Jomo Kenyatta University and contributes to open source projects in his free time.

Packt is searching for authors like you
If you’re interested in becoming an author for Packt, please visit authors.
packtpub.com and apply today. We have worked with thousands of developers and
tech professionals, just like you, to help them share their insight with the global tech
community. You can make a general application, apply for a specific hot topic that we are
recruiting an author for, or submit your own idea.

http://authors.packtpub.com
http://authors.packtpub.com

Preface

Section 1: Building Data Pipelines – Extract
Transform, and Load

1
What is Data Engineering?

What data engineers do� 4
Required skills and knowledge to be a
data engineer � 6

Data engineering versus data
science� 7
Data engineering tools� 7

Programming languages� 8
Databases� 8
Data processing engines� 10
Data pipelines� 11

Summary� 15

2
Building Our Data Engineering Infrastructure

Installing and configuring
Apache NiFi� 18
A quick tour of NiFi� 20
PostgreSQL driver� 27

Installing and configuring
Apache Airflow� 27
Installing and configuring
Elasticsearch� 34

Installing and configuring Kibana�36
Installing and configuring
PostgreSQL� 41
Installing pgAdmin 4� 41
A tour of pgAdmin 4� 42

Summary� 44

Table of Contents

ii Table of Contents

3
Reading and Writing Files

Writing and reading files in
Python� 46
Writing and reading CSVs� 46
Reading and writing CSVs using pandas
DataFrames� 49
Writing JSON with Python� 51

Building data pipelines in

Apache Airflow� 55
Handling files using NiFi
processors� 61
Working with CSV in NiFi� 62
Working with JSON in NiFi� 68

Summary� 72

4
Working with Databases

Inserting and extracting
relational data in Python� 74
Inserting data into PostgreSQL� 75

Inserting and extracting NoSQL
database data in Python� 83
Installing Elasticsearch� 84
Inserting data into Elasticsearch� 84

Building data pipelines in
Apache Airflow� 91

Setting up the Airflow boilerplate� 92
Running the DAG� 94

Handling databases with NiFi
processors� 96
Extracting data from PostgreSQL� 97
Running the data pipeline� 100

Summary� 101

5
Cleaning, Transforming, and Enriching Data

Performing exploratory data
analysis in Python� 104
Downloading the data� 104
Basic data exploration� 104

Handling common data issues
using pandas � 114

Drop rows and columns� 115
Creating and modifying columns� 118
Enriching data � 123

Cleaning data using Airflow� 125
Summary� 128

Table of Contents iii

6
Building a 311 Data Pipeline

Building the data pipeline� 130
Mapping a data type� 130
Triggering a pipeline� 131
Querying SeeClickFix� 132
Transforming the data for Elasticsearch�135
Getting every page� 136

Backfilling data� 138

Building a Kibana dashboard� 139
Creating visualizations� 140
Creating a dashboard� 146

Summary� 150

Section 2: Deploying Data Pipelines
in Production

7
Features of a Production Pipeline

Staging and validating data� 156
Staging data� 156
Validating data with Great Expectations�161

Building idempotent data

pipelines� 178
Building atomic data pipelines� 179
Summary� 181

8
Version Control with the NiFi Registry

Installing and configuring the
NiFi Registry� 184
Installing the NiFi Registry� 184
Configuring the NiFi Registry� 186

Using the Registry in NiFi� 187
Adding the Registry to NiFi	� 188

Versioning your data pipelines� 189
Using git-persistence with the
NiFi Registry� 194
Summary� 199

iv Table of Contents

9
Monitoring Data Pipelines

Monitoring NiFi using the GUI� 201
Monitoring NiFi with the status bar� 202

Monitoring NiFi with processors�210

Using Python with the NiFi REST
API� 214
Summary� 220

10
Deploying Data Pipelines

Finalizing your data pipelines
for production� 222
Backpressure� 222
Improving processor groups� 225

Using the NiFi variable registry� 230
Deploying your data pipelines� 232

Using the simplest strategy� 232
Using the middle strategy� 234
Using multiple registries� 237

Summary� 238

11
Building a Production Data Pipeline

Creating a test and production
environment� 240
Creating the databases� 240
Populating a data lake� 243

Building a production data
pipeline� 244
Reading the data lake� 245

Scanning the data lake� 247
Inserting the data into staging� 248
Querying the staging database� 249
Validating the staging data� 250
Insert Warehouse� 254

Deploying a data pipeline in
production� 255
Summary� 256

Section 3: Beyond Batch – Building
Real-Time Data Pipelines

Table of Contents v

12
Building a Kafka Cluster

Creating ZooKeeper and Kafka
clusters� 260
Downloading Kafka and setting up the
environment� 261
Configuring ZooKeeper and Kafka� 262
Starting the ZooKeeper and Kafka

clusters� 265

Testing the Kafka cluster� 265
Testing the cluster with messages� 266

Summary� 267

13
Streaming Data with Apache Kafka

Understanding logs� 270
Understanding how Kafka uses
logs� 272
Topics� 272
Kafka producers and consumers� 273

Building data pipelines with
Kafka and NiFi� 275
The Kafka producer� 276
The Kafka consumer� 278

Differentiating stream
processing from batch
processing� 282
Producing and consuming with
Python� 284
Writing a Kafka producer in Python� 284
Writing a Kafka consumer in Python� 286

Summary� 288

14
Data Processing with Apache Spark

Installing and running Spark� 290
Installing and configuring
PySpark� 294

Processing data with PySpark� 296
Spark for data engineering� 298

Summary� 303

15
Real-Time Edge Data with MiNiFi, Kafka, and Spark

Setting up MiNiFi� 306
Building a MiNiFi task in NiFi� 308

Summary� 313

vi Table of Contents

Appendix

Building a NiFi cluster� 315
The basics of NiFi clustering� 315
Building a NiFi cluster � 316
Building a distributed data

pipeline� 322
Managing the distributed data
pipeline� 323
Summary� 326

Other Books You May Enjoy
Index

Preface
Data engineering provides the foundation for data science and analytics and constitutes
an important aspect of all businesses. This book will help you to explore various tools and
methods that are used to understand the data engineering process using Python.
The book will show you how to tackle challenges commonly faced in different aspects
of data engineering. You’ll start with an introduction to the basics of data engineering,
along with the technologies and frameworks required to build data pipelines to work with
large datasets. You’ll learn how to transform and clean data and perform analytics to get
the most out of your data. As you advance, you’ll discover how to work with big data of
varying complexity and production databases and build data pipelines. Using real-world
examples, you’ll build architectures on which you’ll learn how to deploy data pipelines.

By the end of this Python book, you’ll have gained a clear understanding of data modeling
techniques, and will be able to confidently build data engineering pipelines for tracking
data, running quality checks, and making necessary changes in production.

Who this book is for
This book is for data analysts, ETL developers, and anyone looking to get started with, or
transition to, the field of data engineering or refresh their knowledge of data engineering
using Python. This book will also be useful for students planning to build a career in data
engineering or IT professionals preparing for a transition. No previous knowledge of data
engineering is required.

viii Preface

What this book covers
Chapter 1, What Is Data Engineering, defines data engineering. It will introduce you
to the skills, roles, and responsibilities of a data engineer. You will also learn how data
engineering fits in with other disciplines, such as data science.

Chapter 2, Building Our Data Engineering Infrastructure, explains how to install
and configure the tools used throughout this book. You will install two databases –
ElasticSearch and PostgreSQL – as well as NiFi, Kibana, and, of course, Python.

Chapter 3, Reading and Writing Files, provides an introduction to reading and writing
files in Python as well as data pipelines in NiFi. It will focus on Comma Seperated Values
(CSV) and JavaScript Object Notation (JSON) files.

Chapter 4, Working with Databases, explains the basics of working with SQL and NoSQL
databases. You will query both types of databases and view the results in Python and
through the use of NiFi. You will also learn how to read a file and insert it into the
databases.

Chapter 5, Cleaning and Transforming Data, explains how to take the files or database
queries and perform basic exploratory data analysis. This analysis will allow you to view
common data problems. You will then use Python and NiFi to clean and transform the
data with a view to solving those common data problems.

Chapter 6, Project – Building a 311 Data Pipeline, sets out a project in which you will
build a complete data pipeline. You will learn how to read from an API and use all of the
skills acquired from previous chapters. You will clean and transform the data as well as
enrich it with additional data. Lastly, you will insert the data into a warehouse and build a
dashboard to visualize it.

Chapter 7, Features of a Production Data Pipeline, covers what is needed in a data pipeline
to make it ready for production. You will learn about atomic transactions and how to
make data pipelines idempotent.

Chapter 8, Version Control Using the NiFi Registry, explains how to version control your
data pipelines. You will install and configure the NiFi registry. You will also learn how to
configure the registry to use GitHub as the source of your NiFi processors.

Preface ix

Chapter 9, Monitoring and Logging Data Pipelines, teaches you the basics of monitoring
and logging data pipelines. You will learn about the features of the NiFi GUI for
monitoring. You will also learn how to use NiFi processors to log and monitor
performance from within your data pipelines. Lastly, you will learn the basics of the NiFi
API.

Chapter 10, Deploying Your Data Pipelines, proposes a method for building test and
production environments for NiFi. You will learn how to move your completed and
version-controlled data pipelines into a production environment.

Chapter 11, Project – Building a Production Data Pipeline, explains how to build a
production data pipeline. You will use the project from Chapter 6 and add a number
of features. You will version control the data pipeline as well as adding monitoring and
logging features.

Chapter 12, Building an Apache Kafka Cluster, explains how to install and configure a
three-node Apache Kafka cluster. You will learn the basics of Kafka – streams, topics, and
consumers.

Chapter 13, Streaming Data with Kafka, explains how, using Python, you can write
to Kafka topics and how to consume that data. You will write Python code for both
consumers and producers using a third-party Python library.

Chapter 14, Data Processing with Apache Spark, walks you through the installation and
configuration of a three-node Apache Spark cluster. You will learn how to use Python to
manipulate data in Spark. This will be reminiscent of working with pandas DataFrames
from Section 1 of this book.

Chapter 15, Project – Real-Time Edge Data – Kafka, Spark, and MiNiFi, introduces MiNiFi,
which is a separate project to make NiFi available on low-resource devices such as Internet
of Things devices. You will build a data pipeline that sends data from MiNiFi to your NiFi
instance.

The Appendix teaches you the basics of clustering with Apache NiFi. You will learn how
to distribute data pipelines and some caveats in doing so. You will also learn how to allow
data pipelines to run on a single, specified node and not run distributed while in a cluster.

x Preface

To get the most out of this book
You should have a basic understanding of Python. You will not be required to know any
existing libraries, just a fundamental understanding of variables, functions, and how to
run a program. You should also know the basics of Linux. If you can run a command in
the terminal and open new terminal windows, that should be sufficient.

If you are using the digital version of this book, we advise you to type the code yourself
or access the code via the GitHub repository (link available in the next section). Doing
so will help you avoid any potential errors related to the copying and pasting of code.

Download the example code files
You can download the example code files for this book at https://github.com/
PacktPublishing/Data-Engineering-with-Python. In case there’s an update
to the code, it will be updated on the existing GitHub repository.

We also have other code bundles from our rich catalog of books and videos available at
https://github.com/PacktPublishing/. Check them out!

https://github.com/PacktPublishing/Data-Engineering-with-Python
https://github.com/PacktPublishing/Data-Engineering-with-Python
https://github.com/PacktPublishing/

Preface xi

Download the color images
We also provide a PDF file that has color images of the screenshots/diagrams used in this
book. You can download it here: http://www.packtpub.com/sites/default/
files/downloads/9781839214189_ColorImages.pdf.

Conventions used
There are a number of text conventions used throughout this book.

Code in text: Indicates code words in text, database table names, folder names,
filenames, file extensions, pathnames, dummy URLs, user input, and Twitter handles.
Here is an example: “Next, pass the arguments dictionary to DAG().”

A block of code is set as follows:

import datetime as dt
from datetime import timedelta

from airflow import DAG
from airflow.operators.bash_operator import BashOperator
from airflow.operators.python_operator import PythonOperator

import pandas as pd

Any command-line input or output is written as follows:

web properties

nifi.web.http.port=9300

Bold: Indicates a new term, an important word, or words that you see on screen. For
example, words in menus or dialog boxes appear in the text like this. Here is an example:
“Click on DAG and select Tree View.”

Tips or important notes
Appear like this.

http://www.packtpub.com/sites/default/files/downloads/9781839214189_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781839214189_ColorImages.pdf

xii Preface

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, mention the book
title in the subject of your message and email us at customercare@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit www.packtpub.com/support/errata, selecting your
book, clicking on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the internet,
we would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in,
and you are interested in either writing or contributing to a book, please visit authors.
packtpub.com.

Reviews
Please leave a review. Once you have read and used this book, why not leave a review on
the site that you purchased it from? Potential readers can then see and use your unbiased
opinion to make purchase decisions, we at Packt can understand what you think about
our products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit packt.com.

http://www.packtpub.com/support/errata
http://authors.packtpub.com
http://authors.packtpub.com
http://packt.com

This section will introduce you to the basics of data engineering. In this section, you
will learn what data engineering is and how it relates to other similar fields, such as data
science. You will cover the basics of working with files and databases in Python and using
Apache NiFi. Once you are comfortable with moving data, you will be introduced to the
skills required to clean and transform data. The section culminates with the building of a
data pipeline to extract 311 data from SeeClickFix, transform it, and load it into another
database. Lastly, you will learn the basics of building dashboards with Kibana to visualize
the data you have loaded into your database.

This section comprises the following chapters:

•	 Chapter 1, What is Data Engineering?

•	 Chapter 2, Building Our Data Engineering Infrastructure

•	 Chapter 3, Reading and Writing Files

•	 Chapter 4, Working with Databases

•	 Chapter 5, Cleaning and Transforming Data

•	 Chapter 6, Building a 311 Data Pipeline

Section 1:
Building Data

Pipelines – Extract
Transform, and Load

32 Building Our Data Engineering Infrastructure

The graph view clearly shows the dependencies in the DAG and the order in which tasks
will run. To watch the DAG run, switch back to Tree View. To the left of the DAG name,
switch the DAG to On. Select Trigger DAG and you will be prompted whether you want
to run it now. Select Yes and the page will refresh. I have run the DAG several times, and
you can see the status of those runs in the following screenshot:

Figure 2.17 – Multiple runs of the execute_bash_operator DAG

Notice that there are two completed, successful runs of the DAG and three runs that are
still running, with four queued tasks in those runs waiting. The examples are great for
learning how to use the Airflow GUI, but they will be cluttered later. While this does not
necessarily create a problem, it will be easier to find the tasks you created without all
the extras.

You can remove the examples by editing the airflow.cfg file. Using vi or an editor of
your choice, find the following line and change True to False:

load_examples = True

Installing and configuring Apache Airflow 33

The airflow.cfg file is shown in the following screenshot, with the cursor at the line
you need to edit:

Figure 2.18 – Setting load_examples = False

Once you have edited the airflow.cfg file, you must shut down the web server. Once
the web server has stopped, the changes to the configuration need to be loaded into
the database. Remember that you set up the database earlier as the first step after pip,
installing Airflow using the following command:

airflow initdb

To make changes to the database, which is what you want to do after changing the
airflow.cfg file, you need to reset it. You can do that using the following snippet:

airflow resetdb

34 Building Our Data Engineering Infrastructure

This will load in the changes from airflow.cfg to the metadata database. Now, you
can restart the web server. When you open the GUI at http://localhost:8080,
it should be empty, as shown in the following screenshot:

Figure 2.19 – Clean Airflow. Not a single DAG in sight

Airflow is clean and ready to load in the DAGs that you will create in the next chapter.

Installing and configuring Elasticsearch
Elasticsearch is a search engine. In this book, you will use it as a NoSQL database. You will
move data both to and from Elasticsearch to other locations. To download Elasticsearch,
take the following steps:

1.	 Use curl to download the files, as shown:

curl https://artifacts.elastic.co/downloads/
elasticsearch/elasticsearch-7.6.0-darwin-x86_64.tar.gz
--output elasticsearch.tar.gz

2.	 Extract the files using the following command:

tar xvzf elasticsearch.tar.gz

Installing and configuring Elasticsearch 35

3.	 You can edit the config/elasticsearch.yml file to name your node and
cluster. Later in this book, you will set up an Elasticsearch cluster with multiple
nodes. For now, I have changed the following properties:

cluster.name: DataEngineeringWithPython

node.name: OnlyNode

4.	 Now, you can start Elasticsearch. To start Elasticsearch, run the following:

bin/elasticsearch

5.	 Once Elasticsearch has started, you can see the results at http://
localhost:9200. You should see the following output:

Figure 2.20 – Elasticsearch running

Now that you have a NoSQL database running, you will need a relational database as well.

36 Building Our Data Engineering Infrastructure

Installing and configuring Kibana
Elasticsearch does not ship with a GUI, but rather an API. To add a GUI to Elasticsearch,
you can use Kibana. By using Kibana, you can better manage and interact with
Elasticsearch. Kibana will allow you to access the Elasticsearch API in a GUI, but more
importantly, you can use it to build visualizations and dashboards of your data held in
Elasticsearch. To install Kibana, take the following steps:

1.	 Using wget, add the key:

wget -qO - https://artifacts.elastic.co/GPG-KEY-
elasticsearch | sudo apt-key add -

2.	 Then, add the repository along with it:

echo "deb https://artifacts.elastic.co/packages/7.x/
apt stable main" | sudo tee -a /etc/apt/sources.list.d/
elastic-7.x.list

3.	 Lastly, update apt and install Kibana:

sudo apt-get update

sudo apt-get install kibana

4.	 The configuration files for Kibana are located in etc/kibana and the application
is in /usr/share/kibana/bin. To launch Kibana, run the following:

bin/kibana

5.	 When Kibana is ready, browse to http://localhost:5601. Kibana will look
for any instance of Elasticsearch running on localhost at port 9200. This is
where you installed Elasticsearch earlier, and also why you did not change the port
in the configuration. When Kibana opens, you will be asked to choose between Try
our sample data and Explore on my own, as shown:

Installing and configuring Kibana 37

Figure 2.21 – First launch of Kibana

Explore on my own will take you to the main Kibana screen, but since you have not
created an Elasticsearch index and have not loaded any data, the application will be blank.

To see the different tools available in Kibana, select Try our sample data, and choose the
e-commerce data. The following screenshot shows the options for Load our Sample Data:

Figure 2.22 – Load sample data and visualizations

38 Building Our Data Engineering Infrastructure

Once you have loaded the sample data, select the Discover icon. From the Discover
section, you are able to look at records in the data. If there are dates, you will see a bar
chart of counts on given time ranges. You can select a bar or change the date ranges from
this tab. Selecting a record will show the data as a table or the JSON representation of the
document. You can also run queries on the data from this tab and save them as objects to
be used later in visualizations. The following screenshot shows the main Discover screen:

Figure 2.23 – The Discover tab

From the data available in the Discover tab or from a saved query, you can create
visualizations. The visualizations include bar charts – horizontal and vertical, pie/donut
charts, counts, markdown, heatmaps, and even a map widget to handle geospatial data.
The e-commerce data contains geospatial data at the country level, but maps can also
handle coordinates. The following screenshot shows a region map of the e-commerce data:

Installing and configuring Kibana 39

Figure 2.24 – A map visualization

When you have created several visualizations, from a single index or from multiple
Elasticsearch indices, you can add them to a dashboard. Kibana allows you to load widgets
using data from multiple indices. When you query or filter within the dashboard, as long
as the field name exists in each of the indices, all of the widgets will update. The following
screenshot shows a dashboard, made up of multiple visualizations of the e-commerce data:

Figure 2.25 – A dashboard using multiple widgets from the e-commerce data

40 Building Our Data Engineering Infrastructure

The Developer Tools tab comes in handy to quickly test Elasticsearch queries before you
implement them in a data engineering pipeline. From this tab, you can create indices and
data, execute queries to filter, search, or aggregate data. The results are displayed in the
main window. The following screenshot shows a record being added to an index, then
a search happening for a specific ID:

Figure 2.26 – A query on a single test record

Now that you have installed Elasticsearch and Kibana, the next two sections will walk
you through installing PostgreSQL and pgAdmin 4. After that, you will have both a SQL
and a NoSQL database to explore.

Installing and configuring PostgreSQL 41

Installing and configuring PostgreSQL
PostgreSQL is an open source relational database. It compares to Oracle or Microsoft
SQL Server. PostgreSQL also has a plugin – postGIS – which allows spatial capabilities in
PostgreSQL. In this book, it will be the relational database of choice. PostgreSQL can be
installed on Linux as a package:

1.	 For a Debian-based system, use apt-get, as shown:

sudo apt-get install postgresql-11

2.	 Once the packages have finished installing, you can start the database with the
following:

sudo pg_ctlcluster 11 main start

3.	 The default user, postgres, does not have a password. To add one, connect to the
default database:

sudo -u postgres psql

4.	 Once connected, you can alter the user and assign a password:

ALTER USER postgres PASSWORD ‚postgres';

5.	 To create a database, you can enter the following command:

sudo -u postgres createdb dataengineering

Using the command line is fast, but sometimes, a GUI makes life easier. PostgreSQL has
an administration tool – pgAdmin 4.

Installing pgAdmin 4
pgAdmin 4 will make managing PostgreSQL much easier if you are new to relational
databases. The web-based GUI will allow you to view your data and allow you to visually
create tables. To install pgAdmin 4, take the following steps:

1.	 You need to add the repository to Ubuntu. The following commands should be
added to the repository:

wget --quiet -O - https://www.postgresql.org/media/keys/
ACCC4CF8.asc | sudo apt-key add -

sudo sh -c 'echo "deb http://apt.postgresql.org/pub/
repos/apt/ `lsb_release -cs`-pgdg main" >> /etc/apt/

42 Building Our Data Engineering Infrastructure

sources.list.d/pgdg.list'

sudo apt update

sudo apt install pgadmin4 pgadmin4-apache2 -y

2.	 You will be prompted to enter an email address for a username and then for
a password. You should see the following screen:

Figure 2.27 – Creating a user for pgAdmin 4

3.	 When the install has completed, you can browse to http://localhost/
pgadmin4 and you will be presented with the login screen, as shown in the
following screenshot. Enter the credentials for the user you just created during
the install:

Figure 2.28 – Logging in to pgAdmin 4

Once you have logged in, you can manage your databases from the GUI. The next section
will give you a brief tour of pgAdmin 4.

A tour of pgAdmin 4
After you log in to pgAdmin 4, you will see a dashboard with a server icon on the left side.
There are currently no servers configured, so you will want to add the server you installed
earlier in this chapter.

Installing pgAdmin 4 43

Click on the Add new server icon on the dashboard. You will see a pop-up window. Add
the information for your PostgreSQL instance, as shown in the following screenshot:

Figure 2.29 – Adding a new server

Once you add the server, you can expand the server icon and you should see the database
you created earlier – dataengineering. Expand the dataengineering database,
then schemas, then public. You will be able to right-click on Tables to add a table to
the database, as shown in the following screenshot:

Figure 2.30 – Creating a table

44 Building Our Data Engineering Infrastructure

To populate the table with data, name the table, then select the Columns tab. Create a
table with some information about people. The table is shown in the following screenshot:

Figure 2.31 – Table data

In the next chapter, you will use Python to populate this table with data using the faker
library.

Summary
In this chapter, you learned how to install and configure many of the tools used by data
engineers. Having done so, you now have a working environment in which you can build
data pipelines. In production, you would not run all these tools on a single machine, but
for the next few chapters, this will help you learn and get started quickly. You now have
two working databases – Elasticsearch and PostgreSQL – as well as two tools for building
data pipelines – Apache NiFi and Apache Airflow.

In the next chapter, you will start to use Apache NiFi and Apache Airflow (Python) to
connect to files, as well as Elasticsearch and PostgreSQL. You will build your first pipeline
in NiFi and Airflow to move a CSV to a database.

3
Reading and Writing

Files
In the previous chapter, we looked at how to install various tools, such as NiFi, Airflow,
PostgreSQL, and Elasticsearch. In this chapter, you will be learning how to use these
tools. One of the most basic tasks in data engineering is moving data from a text file to
a database. In this chapter, you will read data from and write data to several different
text-based formats, such as CSV and JSON.

In this chapter, we're going to cover the following main topics:

•	 Reading and writing files in Python

•	 Processing files in Airflow

•	 NiFi processors for handling files

•	 Reading and writing data to databases in Python

•	 Databases in Airflow

•	 Database processors in NiFi

46 Reading and Writing Files

Writing and reading files in Python
The title of this section may sound strange as you are probably used to seeing it written
as reading and writing, but in this section, you will write data to files first, then read it.
By writing it, you will understand the structure of the data and you will know what it is
you are trying to read.

To write data, you will use a library named faker. faker allows you to easily create
fake data for common fields. You can generate an address by simply calling address(),
or a female name using name_female(). This will simplify the creation of fake data
while at the same time making it more realistic.

To install faker, you can use pip:

pip3 install faker

With faker now installed, you are ready to start writing files. The next section will start
with CSV files.

Writing and reading CSVs
The most common file type you will encounter is Comma-Separated Values (CSV).
A CSV is a file made up of fields separated by commas. Because commas are fairly
common in text, you need to be able to handle them in CSV files. This can be
accomplished by using escape characters, usually a pair of quotes around text strings that
could contain a comma that is not used to signify a new field. These quotes are called
escape characters. The Python standard library for handling CSVs simplifies the process
of handling CSV data.

Writing CSVs using the Python CSV Library
To write a CSV with the CSV library, you need to use the following steps:

1.	 Open a file in writing mode. To open a file, you need to specify a filename and
a mode. The mode for writing is w, but you can also open a file for reading with r,
appending with a, or reading and writing with r+. Lastly, if you are handling files
that are not text, you can add b, for binary mode, to any of the preceding modes to
write in bytes; for example, wb will allow you to write in bytes:

output = open('myCSV.CSV',mode='w')

Writing and reading files in Python 47

2.	 Create CSV_writer. At a minimum, you must specify a file to write to, but you
can also pass additional parameters, such as a dialect. A dialect can be a defined
CSV type, such as Excel, or it can be options such as the delimiter to use or the level
of quoting. The defaults are usually what you will need; for example, the delimiter
defaults to a comma (it is a CSV writer after all) and quoting defaults to QUOTE_
MINIMAL, which will only add quotes when there are special characters or the
delimiter within a field. So, you can create the writer as shown:

mywriter=csv.writer(output)

3.	 Include a header. You might be able to remember what the fields are in your CSV,
but it is best to include a header. Writing a header is the same as writing any other
row: define the values, then you will use writerow(), as shown:

header=['name','age']

mywriter.writerow(header)

4.	 Write the data to a file. You can now write a data row by using writerow(0) and
passing some data, as shown:

data=['Bob Smith',40]

mywriter.writerow(data)

output.close()

Now, if you look in the directory, you will have a CSV file named myCSV.CSV and the
contents should look as in the following screenshot:

Figure 3.1 – The contents of mycsv.csv

Notice that when you used cat to view the file, the newlines were added. By default,
CSV_writer uses a return and a newline ('\r\n').

48 Reading and Writing Files

The preceding example was very basic. However, if you are trying to write a lot of data,
you would most likely want to loop through some condition or iterate through existing
data. In the following example, you will use Faker to generate 1,000 records:

from faker import Faker

import csv

output=open('data.CSV','w')

fake=Faker()

header=['name','age','street','city','state','zip','lng','lat']

mywriter=csv.writer(output)

mywriter.writerow(header)

for r in range(1000):

 mywriter.writerow([fake.name(),fake.random_int(min=18,

 max=80, step=1), fake.street_address(), fake.city(),fake.

 state(),fake.zipcode(),fake.longitude(),fake.latitude()])

 output.close()

You should now have a data.CSV file with 1,000 rows of names and ages.

Now that you have written a CSV, the next section will walk you through reading it using
Python.

Reading CSVs
Reading a CSV is somewhat similar to writing one. The same steps are followed with slight
modifications:

1.	 Open a file using with. Using with has some additional benefits, but for now, the
one you will reap is not having to use close() on the file. If you do not specify a
mode, open defaults to read (r). After open, you will need to specify what to refer
to the file as; in this case, you will open the data.CSV file and refer to it as f:

with open('data.csv') as f:

Writing and reading files in Python 49

2.	 Create the reader. Instead of just using reader(), you will use DictReader().
By using the dictionary reader, you will be able to call fields in the data by name
instead of position. For example, instead of calling the first item in a row as
row[0], you can now call it as row['name']. Just like the writer, the defaults are
usually sufficient, and you will only need to specify a file to read. The following code
opens data.CSV using the f variable name:

myreader=CSV.DictReader(f)

3.	 Grab the headers by reading a single line with next():

headers=next(myreader)

4.	 Now, you can iterate through the rest of the rows using the following:

for row in myreader:

5.	 Lastly, you can print the names using the following:

 print(row['name'])

You should only see the 1,000 names scroll by. Now you have a Python dictionary that you
can manipulate any way you need. There is another way to handle CSV data in Python
and that requires pandas.

Reading and writing CSVs using pandas DataFrames
pandas DataFrames are a powerful tool not only for reading and writing data but also for
the querying and manipulation of data. It does require a larger overhead than the built-in
CSV library, but there are times when it may be worth the trade-off. You may already have
pandas installed, depending on your Python environment, but if you do not, you can
install it with the following:

pip3 install pandas

You can think of a pandas DataFrame as an Excel sheet or a table. You will have rows,
columns, and an index. To load CSV data into a DataFrame, the following steps must
be followed:

1.	 Import pandas (usually as pd):

import pandas as pd

50 Reading and Writing Files

2.	 Then, read the file using read_csv(). The read_csv() method takes several
optional parameters, and one required parameter – the file or file-like buffer.
The two optional parameters that may be of interest are header, which by
defaultattempts to infer the headers. If you set header=0, then you can use the
names parameter with an array of column names. If you have a large file and
you just want to look at a piece of it, you can use nrows to specify the number of
rows to read, so nrows=100 means it will only read 100 rows for the data. In the
following snippet, you will load the entire file using the defaults:

df=pd.read_csv()('data.CSV')

3.	 Let's now look at the first 10 records by using the following:

df.head(10)

Because you used Faker to generate data, you will have the same schema as in the
following screenshot, but will have different values:

Figure 3.2 – Reading a CSV into a DataFrame and printing head()

Writing and reading files in Python 51

You can create a DataFrame in Python with the following steps:

1.	 Create a dictionary of data. A dictionary is a data structure that stores data as
a key:value pair. The value can be of any Python data type – for example, an array.
Dictionaries have methods for finding keys(), values(), and items(). They
also allow you to find the value of a key by using the key name in brackets – for
example, dictionary['key'] will return the value for that key:

data={'Name':['Paul','Bob','Susan','Yolanda'],

'Age':[23,45,18,21]}

2.	 Pass the data to the DataFrame:

df=pd.DataFrame(data)

3.	 The columns are specified as the keys in the dictionary. Now that you have
a DataFrame, you can write the contents to a CSV using to_csv() and passing
a filename. In the example, we did not set an index, which means the row names
will be a number from 0 to n, where n is the length of the DataFrame. When you
export to CSV, these values will be written to the file, but the column name will be
blank. So, in a case where you do not need the row names or index to be written to
the file, pass the index parameter to to_csv(), as shown:

df.to_csv('fromdf.CSV',index=False)

You will now have a CSV file with the contents of the DataFrame. How we can use the
contents of this DataFrame for executing SQL queries will be covered in the next chapter.
They will become an important tool in your toolbox and the rest of the book will lean on
them heavily.

For now, let's move on to the next section, where you will learn about another common
text format – JSON.

Writing JSON with Python
Another common data format you will probably deal with is JavaScript Object Notation
(JSON). You will see JSON most often when making calls to Application Programming
Interfaces (APIs); however, it can exist as a file as well. How you handle the data is very
similar no matter whether you read it from a file or an API. Python, as you learned with
CSV, has a standard library for handling JSON data, not surprisingly named JSON–JSON.

52 Reading and Writing Files

To write JSON using Python and the standard library, the following steps need to be
observed:

1.	 Import the library and open the file you will write to. You also create the Faker
object:

from faker import Faker

import json

output=open('data.JSON','w')

fake=Faker()

2.	 We will create 1,000 records, just as we did in the CSV example, so you will need
to create a dictionary to hold the data. As mentioned earlier, the value of a key can
be any Python data type – including an array of values. After creating the dictionary
to hold the records, add a 'records' key and initialize it with a blank array,
as shown:

alldata={}

alldata['records']=[]

3.	 To write the records, you use Faker to create a dictionary, then append it to the
array:

for x in range(1000):

	 data={"name":fake.name(),"age":fake.random_int

 (min=18, max=80, step=1),

 "street":fake.street_address(),

 "city":fake.city(),"state":fake.state(),

 "zip":fake.zipcode(),

 "lng":float(fake.longitude()),

 "lat":float(fake.latitude())}

	 alldata['records'].append(data)	

4.	 Lastly, to write the JSON to a file, use the JSON.dump() method. Pass the data that
you want to write and a file to write to:

json.dump(alldata,output)

Writing and reading files in Python 53

You now have a data.JSON file that has an array with 1,000 records. You can read this
file by taking the following steps:

1.	 Open the file using the following:

with open("data.JSON","r") as f:

2.	 Use JSON.load() and pass the file reference to the method:

data=json.load(f)

3.	 Inspect the json by looking at the first record using the following:

data['records'][0]

Or just use the name:
data['records'][0]['name']

When you load and dump JSON, make sure you do not add an s at the end of the JSON
terms. loads and dumps are different than load and dump. Both are valid methods of
the JSON library. The difference is that loads and dumps are for strings – they do not
serialize the JSON.

pandas DataFrames
Reading and writing JSON with DataFrames is similar to what we did with CSV. The
only difference is that you change to_csv to to_json() and read_csv() to read_
json().

If you have a clean, well-formatted JSON file, you can read it using the following code:

df=pd.read_json('data.JSON')

In the case of the data.JSON file, the records are nested in a records dictionary. So,
loading the JSON is not as straightforward as the preceding code. You will need a few
extra steps, which are as follows. To load JSON data from the file, do the following:

1.	 Use the pandas JSON library:

import pandas.io.json as pd_JSON

2.	 Open the file and load it with the pandas version of JSON.loads():

f=open('data.JSON','r')

data=pd_JSON.loads(f.read())

54 Reading and Writing Files

3.	 To create the DataFrame, you need to normalize the JSON. Normalizing is how you
can flatten the JSON to fit in a table. In this case, you want to grab the individual
JSON records held in the records dictionary. Pass that path – records – to the
record_path parameter of json_normalize():

df=pd_JSON.json_normalize(data,record_path='records')

You will now have a DataFrame that contains all the records in the data.JSON file. You
can now write them back to JSON, or CSV, using DataFrames.

When writing to JSON, you can pass the orient parameter, which determines the
format of the JSON that is returned. The default is columns, which for the data.JSON
file you created in the previous section would look like the following data:

>>> df.head(2).to_json()

'{"name":{"0":"Henry Lee","1":"Corey Combs DDS"},"
age":{"0":42,"1":43},"street":{"0":"57850 Zachary
Camp","1":"60066 Ruiz Plaza Apt. 752"},"city":{"0":"Lake
Jonathon","1":"East Kaitlin"},"state":{"0":"Rhode Island","
1":"Alabama"},"zip":{"0":"93363","1":"16297"},"lng":{"0":-
161.561209,"1":123.894456},"lat":

{"0":-72.086145,"1":-50.211986}}'

By changing the orient value to records, you get each row as a record in the JSON,
as shown:

>>> df.head(2).to_JSON(orient='records')

'[{"name":"Henry Lee","age":42,"street":"57850, Zachary
Camp","city":"Lake Jonathon","state":"Rhode Island",
"zip":"93363","lng":-161.561209,"lat":72.086145},{"name":"
Corey Combs DDS","age":43,"street":"60066 Ruiz Plaza Apt.
752","city":"EastKaitlin","state":"Alabama",
"zip":"16297","lng":123.894456, "lat":-50.211986}]'

I find that working with JSON that is oriented around records makes processing it
in tools such as Airflow much easier than JSON in other formats, such as split, index,
columns, values, or table. Now that you know how to handle CSV and JSON files in
Python, it is time to learn how to combine tasks into a data pipeline using Airflow and
NiFi. In the next section, you will learn how to build pipelines in Apache Airflow.

Building data pipelines in Apache Airflow 55

Building data pipelines in Apache Airflow
Apache Airflow uses Python functions, as well as Bash or other operators, to create tasks
that can be combined into a Directed Acyclic Graph (DAG) – meaning each task moves
in one direction when completed. Airflow allows you to combine Python functions to
create tasks. You can specify the order in which the tasks will run, and which tasks depend
on others. This order and dependency are what make it a DAG. Then, you can schedule
your DAG in Airflow to specify when, and how frequently, your DAG should run. Using
the Airflow GUI, you can monitor and manage your DAG. By using what you learned in
the preceding sections, you will now make a data pipeline in Airflow.

Building a CSV to a JSON data pipeline
Starting with a simple DAG will help you understand how Airflow works and will help
you to add more functions to build a better data pipeline. The DAG you build will
print out a message using Bash, then read the CSV and print a list of all the names. The
following steps will walk you through building the data pipeline:

1.	 Open a new file using the Python IDE or any text editor. Import the required
libraries, as shown:

import datetime as dt

from datetime import timedelta

from airflow import DAG

from airflow.operators.bash_operator import BashOperator

from airflow.operators.python_operator import
PythonOperator

import pandas as pd

The first two imports bring in datetime and timedelta. These libraries are used
for scheduling the DAG. The three Airflow imports bring in the required libraries
for building the DAG and using the Bash and Python operators. These are the
operators you will use to build tasks. Lastly, you import pandas so that you can
easily convert between CSV and JSON.

56 Reading and Writing Files

2.	 Next, write a function to read a CSV file and print out the names. By combining the
steps for reading CSV data and writing JSON data from the previous sections, you
can create a function that reads in the data.CSV file and writes it out to JSON, as
shown in the following code:

def CSVToJson():

 df=pd.read_CSV('/home/paulcrickard/data.CSV')

 for i,r in df.iterrows():

 print(r['name'])

 df.to_JSON('fromAirflow.JSON',orient='records')

This function opens the file in a DataFrame. Then, it iterates through the rows,
printing only the names, and lastly, it writes the CSV to a JSON file.

3.	 Now, you need to implement the Airflow portion of the pipeline. Specify the
arguments that will be passed to DAG(). In this book, you will use a minimal set
of parameters. The arguments in this example assign an owner, a start date, the
number of retries in the event of a failure, and how long to wait before retrying.
They are shown in the following dictionary:

default_args = {

 'owner': 'paulcrickard',

 'start_date': dt.datetime(2020, 3, 18),

 'retries': 1,

 'retry_delay': dt.timedelta(minutes=5),

}

4.	 Next, pass the arguments dictionary to DAG(). Create the DAG ID, which is set
to MyCSVDAG, the dictionary of arguments (the default_args variable in the
preceding code), and the schedule interval (how often to run the data pipeline). The
schedule interval can be set using timedelts, or you can use a crontab format
with the following presets or crontab:

a) @once

b) @hourly – 0 * * * *

c) @daily – 0 0 * * *

d) @weekly – 0 0 * * 0

e) @monthly – 0 0 1 * *

f) @yearly – 0 0 1 1 *

Building data pipelines in Apache Airflow 57

crontab uses the format minute, hour, day of month, month, day of week. The value
for @yearly is 0 0 1 1 *, which means run yearly on January 1 (1 1), at 0:0
(midnight), on any day of the week (*).

Scheduling a DAG warning
The start_date variable of a DAG is start_date + the
schedule_interval. This means if you schedule a DAG with a start_
date value of today, and a schedule_interval value of daily, the DAG
will not run until tomorrow.

The DAG is created with the following code:
with DAG('MyCSVDAG',

 default_args=default_args,

 schedule_interval=timedelta(minutes=5),

 # '0 * * * *',

) as dag:

5.	 You can now create your tasks using operators. Airflow has several prebuilt
operators. You can view them all in the documentation at https://airflow.
apache.org/docs/stable/_api/airflow/operators/index.html.
In this book, you will mostly use the Bash, Python, and Postgres operators. The
operators allow you to remove most of the boilerplate code that is required to
perform common tasks. In the following snippet, you will create two tasks using the
Bash and Python operators:

 print_starting = BashOperator(task_id='starting',

 bash_command='echo "I am reading the

 CSV now....."')

 CSVJson = PythonOperator(task_id='convertCSVtoJson',

 python_callable=CSVToJson)

The preceding snippet creates a task using the BashOperator operator, which
prints out a statement to let you know it is running. This task serves no purpose
other than to allow you to see how to connect multiple tasks together. The next task,
CSVJson, uses the PythonOperator operator to call the function you defined at
the beginning of the file (CSVToJson()). The function reads the data.CSV file
and prints the name field in every row.

https://airflow.apache.org/docs/stable/_api/airflow/operators/index.html
https://airflow.apache.org/docs/stable/_api/airflow/operators/index.html

58 Reading and Writing Files

6.	 With the tasks defined, you now need to make the connections between the tasks.
You can do this using the set_upstream() and set_downstream() methods
or with the bit shift operator. By using upstream and downstream, you can make
the graph go from the Bash task to the Python task using either of two snippets; the
following is the first snippet:

print_starting .set_downstream(CSVJson)

The following is the second snippet:
CSVJson.set_upstream(print_starting)

Using the bit shift operator, you can do the same; the following is the first option:
print_starting >> CSVJson

The following is the second option:
CSVJson << print_starting

Note
Which method you choose is up to you; however, you should be consistent. In
this book, you will see the bit shift operator setting the downstream.

7.	 To use Airflow and Scheduler in the GUI, you first need to make a directory for
your DAGs. During the install and configuration of Apache Airflow, in the previous
chapter, we removed the samples and so the DAG directory is missing. If you
look at airflow.cfg, you will see the setting for dags_folder. It is in the
format of $AIRFLOW_HOME/dags. On my machine, $AIRFLOW_HOME is home/
paulcrickard/airflow. This is the directory in which you will make the dags
folder.e configuration file showing where the folder should be.

8.	 Copy your DAG code to the folder, then run the following:

airflow webserver

airflow scheduler

Building data pipelines in Apache Airflow 59

9.	 Launch the GUI by opening your web browser and going to http://
localhost:8080. You will see your DAG, as shown in the following screenshot:

Figure 3.3 – The main screen of the Airflow GUI showing MyCSVDAG

10.	 Click on DAGs and select Tree View. Turn the DAG on, and then click Go. As the
tasks start running, you will see the status of each run, as shown in the following
screenshot:

Figure 3.4 – Multiple runs of the DAG and the status of each task

60 Reading and Writing Files

11.	 You will see that there have been successful runs – each task ran and did so
successfully. But there is no output or results. To see the results, click on one of the
completed squares, as shown in the following screenshot:

Figure 3.5 – Checking results by hovering over the completed task

12.	 You will see a popup with several options. Click the View Log button, as shown in
the following screenshot:

Figure 3.6 – Selecting View Log to see what happened in your task

Handling files using NiFi processors 61

13.	 You will be redirected to the log screen for the task. Looking at a successful run of
the CSV task, you should see a log file similar to the one in the following screenshot:

Figure 3.7 – Log of the Python task showing the names being printed

Congratulations! You have built a data pipeline with Python and ran it in Airflow. The
result of your pipeline is a JSON file in your dags directory that was created from your
data.CSV file. You can leave it running and it will continue to run at the specified
schedule_interval time. Building more advanced pipelines will only require you to
write more functions and connect them with the same process. But before you move on
to more advanced techniques, you will need to learn how to use Apache NiFi to build data
pipelines.

Handling files using NiFi processors
In the previous sections, you learned how to read and write CSV and JSON files using
Python. Reading files is such a common task that tools such as NiFi have prebuilt
processors to handle it. In this section, you will learn how to handle files using NiFi
processors.

62 Reading and Writing Files

Working with CSV in NiFi
Working with files in NiFi requires many more steps than you had to use when doing the
same tasks in Python. There are benefits to using more steps and using Nifi, including that
someone who does not know code can look at your data pipeline and understand what it
is you are doing. You may even find it easier to remember what it is you were trying to do
when you come back to your pipeline in the future. Also, changes to the data pipeline do
not require refactoring a lot of code; rather, you can reorder processors via drag and drop.

In this section, you will create a data pipeline that reads in the data.CSV file you created
in Python. It will run a query for people over the age of 40, then write out that record to
a file.

The result of this section is shown in the following screenshot:

Figure 3.8 – The data pipeline you will build in this section

The following sections will walk you through building a data pipeline.

Handling files using NiFi processors 63

Reading a file with GetFile
The first step in your data pipeline is to read in the data.csv file. To do that, take the
following steps:

1.	 Drag the Processor icon from the NiFi toolbar to the canvas. Search for GetFile and
then select it.

2.	 To configure the GetFile processor, you must specify the input directory. In the
Python examples earlier in this chapter, I wrote the data.CSV file to my home
directory, which is home/paulcrickard, so this is what I will use for the input
directory.

3.	 Next, you will need to specify a file filter. This field allows the NiFi expression
language, so you could use regular expressions (regex) and specify any file ending
with CSV – [^\.].*\.CSV – but for this example, you can just set the value to
data.csv.

4.	 Lastly, the Keep Source File property should be set to true. If you leave it as false,
NiFi will delete the file once it has processed it. The complete configuration is
shown in the following screenshot:

Figure 3.9 – GetFile processor configuration

64 Reading and Writing Files

Splitting records into distinct flowfiles
Now you can pass the success relationship from the GetFile processor to the
SplitRecord processor:

1.	 The SplitRecord processor will allow you to separate each row into a separate
flowfile. Drag and drop it on the canvas. You need to create a record reader and
a record writer – NiFi already has several that you can configure. Click on the box
next to Record Reader and select Create new service, as shown in the following
screenshot:

Figure 3.10 – A list of available readers

2.	 You will need to choose the type of reader. Select CSVReader from the dropdown.
Select the dropdown for Record Writer and choose CSVRecordSetWriter:

Handling files using NiFi processors 65

Figure 3.11 – A list of available readers

3.	 To configure CSVReader and CSVRecordSetWriter, click the arrow to the right of
either one. This will open the Files Configuration window on the CONTROLLER
SERVICES tab. You will see the screen shown in the following screenshot:

Figure 3.12 – Configuring the reader and writer

The three icons to the right are as follows:

•	 A gear for settings

•	 A lightning bolt for enabling and disabling the service (it is currently disabled)

•	 A trash can to delete it

66 Reading and Writing Files

Select the gear for CSVReader. The default configuration will work, except for the
Treat First Line as Header property, which should be set to true. Click the gear for
CSVRecordSetWriter and you can see the available properties. The defaults are sufficient
in this example. Now, click the lightning bolt to enable the services.

Filtering records with the QueryRecord processor
You now have a pipeline that will read a CSV and split the rows into individual flowfiles.
Now you can process each row with the QueryRecord processor. This processor will
allow you to execute a SQL command against the flowfile. The contents of the new flowfile
will be the results of the SQL query. In this example, you will select all records where the
age of the person is over 40:

1.	 Drag and drop the QueryRecord processor to the canvas. To query the flowfile,
you need to specify a record reader and writer. You have already created one of each
of these and they are available in the dropdown now. The Include Zero Record
FlowFiles property should be set to false. This property will route records that do
not meet the criteria to the same relationship (which you do not want).

2.	 Lastly, click the plus sign in the right-hand corner and specify a property name in
the popup. The name of the property will become a relationship when you create
a connection from this processor. Name the property over.40. Then, the value
popup will appear. This is where you will enter the SQL query. The results of the
query will become the contents of the flowfile. Since you want the records of people
over 40 years of age, the query is as follows:

Select * from FlowFile where age > 40

The Select * query is what returns the entire flowfile. If you only wanted
the name of the person and for the field to be full_name, you could run the
following SQL:

Select name as full_name from FlowFile where age > 40

The point I am attempting to drive home here is that you can execute SQL and modify
the flowfile to something other than the contents of the row – for example, running and
aggregation and a group by.

Extracting data from a flowfile
The next processor will extract a value from the flowfile. That processer is ExtractText.
The processor can be used on any flowfile containing text and uses regex to pull any data
from the flowfile and assign it to an attribute.

Handling files using NiFi processors 67

To configure the processor, click the plus sign and name the property. You will extract
the person name from the flowfile, so you can name the property name. The value will be
regex and should be as follows:

\n([^,]*),

Without a full tutorial on regex, the preceding regex statement looks for a newline and
a comma – \n and the comma at the end – and grabs the text inside. The parentheses say
to take the text and return any characters that are not ^ or a comma. This regex returns
the person's name. The flowfile contains a header of field names in CSV, a new line,
followed by values in CSV. The name field is the first field on the second line – after the
newline and before the first comma that specifies the end of the name field. This is why
the regex looks for the text between the newline and the comma.

Modifying flowfile attributes
Now that you have pulled out the person name as an attribute, you can use the
UpdateAttribute processor to change the value of existing attributes. By using this
processor, you will modify the default filename attribute that NiFi has provided the
flowfile all the way at the beginning in the GetFile processor. Every flowfile will have
the filename data.CSV. If you try to write the flowfiles out to CSV, they will all have the
same name and will either overwrite or fail.

Click the plus sign in the configuration for the UpdateAttribute processor and
name the new property filename. The value will use the NiFi Expression Language.
In the Expression Language, you can grab the value of an attribute using the format
${attribute name}. So, to use the name attribute, set the value to ${name}.

Saving a flowfile to disk
Using the PutFile processor, you can write the contents of a flowfile to disk. To
configure the processor, you need to specify a directory in which to write the files. I will
again use my home directory.

Next, you can specify a conflict resolution strategy. By default, it will be set to fail, but it
allows you to overwrite an existing file. If you were running this data pipeline, aggregating
data every hour and writing the results to files, maybe you would set the property to
overwrite so that the file always holds the most current data. By default, the flowfile will
write to a file on disk with the property filename as the filename.

68 Reading and Writing Files

Creating relationships between the processors
The last step is to make connections for specified relationships between the processors:

1.	 Grab the GetFile processor, drag the arrow to the SplitRecord processor, and
check the relationship success in the popup.

2.	 From the SplitRecord processor, make a connection to the QueryRecord
processor and select the relationship splits. This means that any record that was split
will be sent to the next processor.

3.	 From QueryRecord, connect to the ExtractText processor. Notice the
relationship you created is named over.40. If you added more SQL queries, you
would get additional relationships. For this example, use the over.40 relationship.

4.	 Connect ExtractText to the UpdateAttribute processor for the relationship
matched.

5.	 Lastly, connect UpdateAttribute to the PutFile processor for the relationship
success.

The data pipeline is now complete. You can click on each processor and select Run to start
it – or click the run icon in the operate window to start them all at once.

When the pipeline is completed, you will have a directory with all the rows where the
person was over 40. Of the 1,000 records, I have 635 CSVs named for each person. You
will have different results based on what Faker used as the age value.

This section showed you how to read in a CSV file. You also learned how you can split
the file into rows and then run queries against them, as well as how to modify attributes of
a flowfile and use it in another processor. In the next section, you will build another data
pipeline using JSON.

Working with JSON in NiFi
While having a different structure, working with JSON in NiFi is very similar to working
with CSV. There are, however, a few processors for dealing exclusively with JSON. In this
section, you will build a flow similar to the CSV example – read a file, split it into rows,
and write each row to a file – but you will perform some more modifications of the data
within the pipeline so that the rows you write to disk are different than what was in the
original file. The following diagram shows the completed data pipeline:

Handling files using NiFi processors 69

Figure 3.13 – The completed JSON data pipeline

To build the data pipeline, take the following steps:

1.	 Place the GetFile processor on to the canvas. To configure the processor, specify
the Input Directory values as home/paulcrickard – and the File Filter value as
data.JSON.

2.	 In the CSV example, you used the SplitRecord processor. Here, for JSON,
you can use the SplitJson processor. You will need to configure the JsonPath
Expression property. This property is looking for an array that contains JSON
elements. The JSON file is in the following format:

{"records":[{ }] }

Because each record is in an array, you can pass the following value to the JsonPath
Expression property:

$.records

This will split records inside of the array, which is the result you want.

70 Reading and Writing Files

3.	 The records will now become individual flowfiles. You will pass the files to the
EvaluateJsonPath processor. This processor allows you to extract values from
the flowfile. You can either pass the results to the flowfile content or to an attribute.
Set the value of the Destination property to flowfile-attribute. You can
then select attributes to create using the plus sign. You will name the attribute, then
specify the value. The value is the JSON path, and you use the format $.key. The
configured processor is shown in the following screenshot:

Figure 3.14 – Configuration for extracting values from the flowfile
These attributes will not be passed down the data pipeline with the flowfile.

4.	 Now, you can use the QueryRecord processor, just like you did with the CSV
example. The difference with JSON is that you need to create a new record
reader and recordset writer. Select the option to create a new service. Select
JsonTreeReader and JsonRecordsetWriter. Click the arrow to go to the Controller
services tab and click the lightning bolt to activate the services. The default
configurations will work in this example. In the processor, add a new property using
the plus sign. Name it over.40 and set the value to the following:

Select * from FlowFile where age > 40

Handling files using NiFi processors 71

5.	 The next processor is the AttributesToJSON processor. This processor
allows you to replace the flowfile content with the attributes you extracted in the
EvaluateJsonPath processor shown in step 3. Set the Destination property
to flowfile-content. This processor also allows you to specify a comma-
separated list of attributes in the Attributes List property. This can come in handy
if you only want certain attributes. In this example, you leave it blank and several
attributes you do not extract will be added to the flowfile content. All of the
metadata attributes that NiFi writes will now be a part of the flowfile. The flowfile
will now look as in the following snippet:

Run it at night

6.	 Using the EvalueJsonPath processor again, you will create an attribute named
uuid. Now that the metadata from NiFi is in the flowfile, you have the unique ID
of the flowfile. Make sure to set Destination to flowfile-attribute. You will
extract it now so that you can pass it to the next processor – UpdateAttribute.

7.	 In the CSV example, you updated the filename using the UpdateAttribute
processor. You will do the same here. Click on the plus sign and add an attribute
named filename. Set the value to ${uuid}.

8.	 One way to modify JSON using NiFi is through Jolt transformations. The JSON
Language for Transform library allows you to modify JSON. A full tutorial on Jolt
is beyond the scope of this book, but the processor allows you to select from several
Jolt transformation DSLs. In this example, you will use a simple remove, which will
delete a field. NiFi abbreviates the Jolt JSON because you have already specified
what you are doing in the configuration. In the Jolt Specification property, enter
the JSON, as shown in the following snippet:

{

 "zip": ""

}

The preceding snippet will remove the zip field from the flowfile.

9.	 Lastly, use the PutFile processor to write each row to disk. Configure the
Directory and Conflict Resolution Strategy properties. By setting the Conflict
Resolution Strategy property to ignore, the processor will not warn you if it has
already processed a file with the same name.

72 Reading and Writing Files

Create the connections and relationships between the processors:

•	 Connect GetFile to SplitJson for relationship success.

•	 Connect SplitJson to EvaluateJsonPath for relationship splits.

•	 Connect EvaluateJsonPath to QueryRecord for relationship matched.

•	 Connect QueryRecord to AttributesToJSON for relationship over.40.

•	 Connect AttributesToJSON to UpdateAttribute for relationship success.

•	 Connect UpdateAttributes to JoltTransformJSON for relationship success.

•	 Connect JoltTransformJSON to PutFile for relationship success.

Run the data pipeline by starting each processor or clicking Run in the operate box. When
complete, you will have a subset of 1,000 files – all people over 40 – on disk and named by
their unique ID.

Summary
In this chapter, you learned how to process CSV and JSON files using Python. Using
this new skill, you have created a data pipeline in Apache Airflow by creating a Python
function to process a CSV and transform it into JSON. You should now have a basic
understanding of the Airflow GUI and how to run DAGs. You also learned how to build
data pipelines in Apache NiFi using processors. The process for building more advanced
data pipelines is the same, and you will learn the skills needed to accomplish this
throughout the rest of this book.

In the next chapter, you will learn how to use Python, Airflow, and NiFi to read and write
data to databases. You will learn how to use PostgreSQL and Elasticsearch. Using both will
expose you to standard relational databases that can be queried using SQL and NoSQL
databases that allow you to store documents and use their own query languages.

4
Working with

Databases
In the previous chapter, you learned how to read and write text files. Reading log files
or other text files from a data lake and moving them into a database or data warehouse
is a common task for data engineers. In this chapter, you will use the skills you gained
working with text files and learn how to move that data into a database. This chapter
will also teach you how to extract data from relational and NoSQL databases. By the
end of this chapter, you will have the skills needed to work with databases using Python,
NiFi, and Airflow. It is more than likely that most of your data pipelines will end with a
database and very likely that they will start with one as well. With these skills, you will be
able to build data pipelines that can extract and load, as well as start and finish, with both
relational and NoSQL databases.

In this chapter, we're going to cover the following main topics:

•	 Inserting and extracting relational data in Python

•	 Inserting and extracting NoSQL database data in Python

•	 Building database pipelines in Airflow

•	 Building database pipelines in NiFi

74 Working with Databases

Inserting and extracting relational data in
Python
When you hear the word database, you probably picture a relational database – that is,
a database made up of tables containing columns and rows with relationships between the
tables; for example, a purchase order system that has inventory, purchases, and customer
information. Relational databases have been around for over 40 years and come from the
relational data model developed by E. F. Codd in the late 1970s. There are several vendors
of relational databases – including IBM, Oracle, and Microsoft – but all of these databases
use a similar dialect of SQL, which stands for Structured Query Language. In this book,
you will work with a popular open source database – PostgreSQL. In the next section, you
will learn how to create a database and tables.

Creating a PostgreSQL database and tables
In Chapter 2, Building Our Data Engineering Infrastructure, you created a database
in PostgreSQL using pgAdmin 4. The database was named dataengineering and
you created a table named users with columns for name, street, city, ZIP, and ID. The
database is shown in the following screenshot:

Figure 4.1 – The dataengineering database

Inserting and extracting relational data in Python 75

If you have the database created, you can skip this section, but if you do not, this section
will quickly walk you through creating one.

To create a database in PostgreSQL with pgAdmin 4, take the following steps:

1.	 Browse to http://localhost/pgadmin4 and log in using the account you
created during the installation of pgAdmin in Chapter 2, Building Our Data
Engineering Infrastructure.

2.	 Expand the server icon in the Browser pane. Right-click on the MyPostgreSQL
icon and select Create | Database.

3.	 Name the database dataengineering. You can leave the user as postgres.

4.	 Expand the dataengineering icon, then expand Schemas, then public, then
Tables. Right-click on Tables, then click Create | Table.

5.	 Name the table users. Click the Columns tab and then, using the plus sign on
the right, create columns to match the preceding screenshot of the database. The
columns' names and types will be as follows:

a) name: text

b) id: integer

c) street: text

d) city: text

e) zip: text
Now you have a database and a table created in PostgreSQL and can load data using
Python. You will populate the table in the next section.

Inserting data into PostgreSQL
There are several libraries and ways to connect to a database in Python – pyodbc,
sqlalchemy, psycopg2, and using an API and requests. In this book, we will use
the psycopg2 library to connect to PostgreSQL because it is built specifically to
connect to PostgreSQL. As your skills progress, you may want to look into tools such
as SQLAlchemy. SQLAlchemy is a toolkit and an object-relational mapper for Python.
It allows you to perform queries in a more Pythonic way – without SQL – and to map
Python classes to database tables.

76 Working with Databases

Installing psycopg2
You can check whether you have psycopg2 installed by running the following
command:

python3 -c "import psycopg2; print(psycopg2.__version__)"

The preceding command runs python3 with the command flag. The flag tells Python
to run the commands as a Python program. The quoted text imports psycopg2 and
then prints the version. If you receive an error, it is not installed. You should see a version
such as 2.8.4 followed by some text in parentheses. The library should have been installed
during the installation of Apache Airflow because you used all the additional libraries in
Chapter 2, Building Our Data Engineering Infrastructure.

If it is not installed, you can add it with the following command:

pip3 install psycopg2

Using pip requires that there are additional dependencies present for it to work. If you
run into problems, you can also install a precompiled binary version using the following
command:

pip3 install psycopg2-binary

One of these two methods will get the library installed and ready for us to start the
next section.

Connecting to PostgreSQL with Python
To connect to your database using psycopg2, you will need to create a connection, create
a cursor, execute a command, and get the results. You will take these same steps whether
you are querying or inserting data. Let's walk through the steps as follows:

1.	 Import the library and reference it as db:

import psycopg2 as db

2.	 Create a connection string that contains the host, database, username,
and password:

conn_string="dbname='dataengineering' host='localhost'
user='postgres' password='postgres'"

Inserting and extracting relational data in Python 77

3.	 Create the connection object by passing the connection string to the connect()
method:

conn=db.connect(conn_string)

4.	 Next, create the cursor from the connection:

cur=conn.cursor()

You are now connected to the database. From here, you can issue any SQL commands.
In the next section, you will learn how to insert data into PostgreSQL

Inserting data
Now that you have a connection open, you can insert data using SQL. To insert a single
person, you need to format a SQL insert statement, as shown:

query = "insert into users (id,name,street,city,zip)
values({},'{}','{}','{}','{}')".format(1,'Big Bird','Sesame
Street','Fakeville','12345')

To see what this query will look like, you can use the mogrify() method.

What is mogrify?
According to the psycopg2 docs, the mogrify method will return a query
string after arguments binding. The string returned is exactly the one that
would be sent to the database running the execute() method or similar.
In short, it returns the formatted query. This is helpful as you can see what you
are sending to the database, because your SQL query can often be a source
of errors.

Pass your query to the mogrify method:

cur.mogrify(query)

The preceding code will create a proper SQL insert statement; however, as you progress,
you will add multiple records in a single statement. To do so, you will create a tuple of
tuples. To create the same SQL statement, you can use the following code:

query2 = "insert into users (id,name,street,city,zip)
values(%s,%s,%s,%s,%s)"

data=(1,'Big Bird','Sesame Street','Fakeville','12345')

78 Working with Databases

Notice that in query2, you did not need to add quotes around strings that would be
passed in as you did in query when you used {}. Using the preceding formatting,
psycopg2 will handle the mapping of types in the query string. To see what the query
will look like when you execute it, you can use mogrify and pass the data along with
the query:

cur.mogrify(query2,data)

The results of mogrify on query and query2 should be identical. Now, you can
execute the query to add it to the database:

cur.execute(query2,data)

If you go back to pgAdmin 4, right-click on the users table, then select View/Edit Data |
All Rows, you can see that no data has been added to the table. Why is that? Did the code
fail? It did not. When you execute any statement that modifies the database, such as an
insert statement, you need to make it permanent by committing the transaction using
the following code:

conn.commit()

Now, in pgAdmin 4, you should be able to see the record, as shown in the following
screenshot:

Figure 4.2 – Record added to the database

Inserting and extracting relational data in Python 79

The record is now added to the database and visible in pgAdmin 4. Now that you have
entered a single record, the next section will show you how to enter multiple records.

Inserting multiple records
To insert multiple records, you could loop through data and use the same code shown
in the preceding section, but this would require a transaction per record in the database.
A better way would be to use a single transaction and send all the data, letting psycopg2
handle the bulk insert. You can accomplish this by using the executemany method. The
following code will use Faker to create the records and then executemany() to insert
them:

1.	 Import the needed libraries:

import psycopg2 as db

from faker import Faker

2.	 Create the faker object and an array to hold all the data. You will initialize
a variable, i, to hold an ID:

fake=Faker()

data=[]

i=2

3.	 Now, you can look, iterate, and append a fake tuple to the array you created in the
previous step. Increment i for the next record. Remember that in the previous
section, you created a record for Big Bird with an ID of 1. That is why you will
start with 2 in this example. We cannot have the same primary key in the database
table:

for r in range(1000):

 data.append((i,fake.name(),fake.street_address(),

 fake.city(),fake.zipcode()))

 i+=1

4.	 Convert the array into a tuple of tuples:

data_for_db=tuple(data)

80 Working with Databases

5.	 Now, you are back to the psycopg code, which will be similar to the example from
the previous section:

conn_string="dbname='dataengineering' host='localhost'
user='postgres' password='postgres'"

conn=db.connect(conn_string)

cur=conn.cursor()

query = "insert into users (id,name,street,city,zip)
values(%s,%s,%s,%s,%s)"

6.	 You can print out what the code will send to the database using a single record from
the data_for_db variable:

print(cur.mogrify(query,data_for_db[1]))

7.	 Lastly, use executemany() instead of execute() to let the library handle the
multiple inserts. Then, commit the transaction:

cur.executemany(query,data_for_db)

conn.commit()

Now, you can look at pgAdmin 4 and see the 1,000 records. You will have data similar to
what is shown in the following screenshot:

Figure 4.3 – 1,000 records added to the database

Inserting and extracting relational data in Python 81

Your table should now have 1,001 records. Now that you can insert data into PostgreSQL,
the next section will show you how to query it in Python.

Extracting data from PostgreSQL
Extracting data using psycopgs follows the exact same procedure as inserting, the only
difference being that you will use a select statement instead of insert. The following
steps show you how to extract data:

1.	 Import the library, then set up your connection and cursor:

import psycopg2 as db

conn_string="dbname='dataengineering' host='localhost'
user='postgres' password='postgres'"

conn=db.connect(conn_string)

cur=conn.cursor()

2.	 Now, you can execute a query. In this example, you will select all records from the
users table:

query = "select * from users"

cur.execute(query)

3.	 Now, you have an iterable object with the results. You can iterate over the cursor,
as shown:

for record in cur:

 print(record)

4.	 Alternatively, you could use one of the fetch methods:

cur.fetchall()

cur.fetchmany(howmany) # where howmany equals the number
of records you want returned

cur.fetchone()

5.	 To grab a single record, you can assign it to a variable and look at it. Note that even
when you select one record, the cursor returns an array:

data=cur.fetchone()

print(data[0])

132 Building a 311 Data Pipeline

To start the data pipeline, you will use the GenerateFlowFile processor. Drag and
drop the processor on the canvas. Double-click on it to change the configuration. In the
Settings tab, name the processor. I have named it Start Flow Fake Data. This lets
us know that this processor sends fake data just to start the flow. The configuration will
use all the defaults and look like the following screenshot:

Figure 6.3 – Configuring the GenerateFlowfile processor

Lastly, in the SCHEDULING tab, set the processor to run at your desired interval. I use 8
because I do not want to overwhelm the API.

The processor, when running, will generate a single flowfile with 0 bytes of data. It is
empty, but it does contain metadata generated by NiFi. However, this empty flowfile will
do the trick and start the next processor. That is where the work begins.

Querying SeeClickFix
In the previous NiFi examples, you did not use any code, just configurations to make the
processor do what you needed. We could do that in this pipeline. However, now is a good
time to introduce coding using Python – Jython – into your pipelines.

Building the data pipeline 133

Drag and drop the ExecuteScript processor to the canvas. Double-click on it to edit
the configuration. Starting with the Settings tab, name it something that makes sense to
you – I named it Query SCF so that I know it queries SeeClickFix. In the Properties
tab, set Script Engine to Python. In the Script Body parameter, you will write the Python
code that the processor will execute. The query steps are as follows:

1.	 You need to import the required libraries. The following code is the libraries that
you will always need to include:

import java.io

from org.apache.commons.io import IOUtils

from java.nio.charset import StandardCharsets

from org.apache.nifi.processor.io import StreamCallback

from org.python.core.util import StringUtil

2.	 Next, you will create the class that will be called to handle the work. The process
function will contain the code that will perform the task:

class ModJSON(StreamCallback):

 def __init__(self):

 pass

 def process(self, inputStream, outputStream):

 # Task Goes Here

3.	 Lastly, assume that no errors have occurred, and check whether there is a flowfile.
If there is one, write the flowfile calling the class. Next, check whether an error
occurred. If there was an error, you will send the flowfile to the failure relationship,
otherwise, send it to the success relationship:

errorOccurred=False

flowFile = session.get()

if (flowFile != None):

 flowFile = session.write(flowFile, ModJSON())

 #flowFile = session.putAttribute(flowFile)

 if(errorOccurred):

 session.transfer(flowFile, REL_FAILURE)

 else:

 session.transfer(flowFile, REL_SUCCESS)

134 Building a 311 Data Pipeline

The preceding code is the boiler plate for any Python ExecuteScript processor.
The only thing you will need to change will be in the process function, which we
will do in the steps that follow.

Because NiFi uses Jython, you can add many Python libraries to the Jython
environment, but that is beyond the scope of this book. For now, you will use the
standard libraries.

4.	 To make a call to the SeeClickFix API, you will need to import the urllib libraries
and json, as shown:

import urllib

import urllib2

import json

5.	 Next, you will put the code in the process function. The code will be a try
except block that makes a request to the HTTP endpoint and writes out the
response to outputStream. If there was an error, the except block will set
errorOccurred to True and this will trigger the rest of the code to send the
flowfile to the Failure relationship. The only line in the try block that is not
standard Python for using urllib is outputStream.write(). This is where
you write to the flowfile:

 try:

 param = {'place_url':'bernalillo-county',

 'per_page':'100'}

 url = 'https://seeclickfix.com/api/v2/issues?' +

 urllib.urlencode(param)

 rawreply = urllib2.urlopen(url).read()

 reply = json.loads(rawreply)

 outputStream.write(bytearray(json.dumps(reply,

 indent=4).encode('utf-8')))

 except:

 global errorOccurred

 errorOccurred=True

 outputStream.write(bytearray(json.dumps(reply,

 indent=4).encode('utf-8')))

Building the data pipeline 135

The preceding code, when successful, will output a JSON flowfile. The contents of the
flowfile will contain some metadata and an array of issues. The two pieces of metadata we
will be interested in are page and pages.

You have grabbed the first 100 issues for Bernalillo County, and will pass this flowfile
to two different processors – GetEveryPage and SplitJson. We will follow the
SplitJson path, as this path will send the data to Elasticsearch.

Transforming the data for Elasticsearch
The following are the steps for transforming data for Elasticsearch:

1.	 Drag and drop the SplitJson processor to the canvas. Double-click on it to
modify the properties. In the Properties tab, set the JsonPath Expression property
to $.issues. This processor will now split the 100 issues into their own flowfiles.

2.	 Next, you need to add coordinates in the format expected by NiFi. We will use an x,
y string named coords. To do that, drag and drop an ExecuteScript processor
to the canvas. Double-click on it and click the Properties tab. Set the Script Engine
to Python. The Script Body property will contain the standard boiler plate, plus the
import json statement.

3.	 The process function will convert the input stream to a string. The input stream
is the flowfile contents from the previous processor. In this case, it is a single issue.
Then it will use the json library to load it as json. You then add a field named
coords and assign it the value of a concatenated string of the lat and lng fields
in the flowfile JSON. Lastly, you write the JSON back to the output stream as a new
flowfile:

def process(self, inputStream, outputStream):

 try:

 text = IOUtils.toString(inputStream,

 StandardCharsets.UTF_8)

 reply=json.loads(text)

reply['coords']=str(reply['lat'])+','+str(reply['lng'])

 d=reply['created_at'].split('T')

 reply['opendate']=d[0]

 outputStream.write(bytearray(json.dumps(reply,

 indent=4).encode('utf-8')))

 except:

136 Building a 311 Data Pipeline

 global errorOccurred

 errorOccurred=True

 outputStream.write(bytearray(json.dumps(reply,

 indent=4).encode('utf-8')))

Now you have a single issue, with a new field called coords, that is a string format
that Elasticsearch recognizes as a geopoint. You are almost ready to load the data in
Elasticsearch, but first you need a unique identifier.

4.	 To create the equivalent of a primary key in Elasticsearch, you can specify an ID.
The JSON has an ID for each issue that you can use. To do so, drag and drop the
EvaluateJsonPath processor on to the canvas. Double-click on it and select
the Properties tab. Clicking the plus sign in the upper-right corner, add a property
named id with the value of $.id. Remember that $. allows you to specify a JSON
field to extract. The flowfile now contains a unique ID extracted from the JSON.

5.	 Drag and drop the PutElasticsearchHttp processor on to the canvas.
Double-click on it to edit the properties. Set the Elasticsearch URL property to
http://localhost:9200. In the optional Identifier Attribute property, set
the value to id. This is the attribute you just extracted in the previous processor.
Set the Index to SCF (short for SeeClickFix), and the Type to doc. Lastly, you will
set the Index Operation property to upsert. In Elasticsearch, upsert will index the
document if the ID does not already exist, and it will update if the ID exists, and the
data is different. Otherwise, nothing will happen, and the record will be ignored,
which is what you want if the data is already the same.

The issues are now being loaded in Elasticsearch, and if you were to check, you will
have 100 documents in your scf index. But there are a lot more than 100 records in
the SeeClickFix data for Bernalillo County; there are 44 pages of records (4,336 issues)
according to the metadata from the QuerySCF processor.

The following section will show you how to grab all the data.

Getting every page
When you queried SeeClickFix, you sent the results to two paths. We took the
SplitJson path. The reason for this is because on the initial query, you got back 100
issues and how many pages of issues exist (as part of the metadata). You sent the issues
to the SplitJson path, because they were ready to process, but now you need to do
something with the number of pages. We will do that by following the GetEveryPage
path.

Building the data pipeline 137

Drag and drop an ExecuteScript processor on to the canvas. Double-click on it to
edit the Properties tab. Set the Script Engine property to Python and the Script Body
will include the standard boiler plate – including the imports for the urllib and json
libraries.

The process function will convert the input stream to JSON, and then it will load it
using the json library. The main logic of the function states that if the current page is less
than or equal to the total number of pages, call the API and request the next page (next_
page_url), and then write out the JSON as a flowfile. Otherwise, it stops. The code is as
follows:

try:

 text = IOUtils.toString(inputStream,

 StandardCharsets.UTF_8)

 asjson=json.loads(text)

 if asjson['metadata']['pagination']

 ['page']<=asjson['metadata']['pagination']['pages']:

 url = asjson['metadata']['pagination']

 ['next_page_url']

 rawreply = urllib2.urlopen(url).read()

 reply = json.loads(rawreply)

 outputStream.write(bytearray(json.dumps(reply,

 indent=4).encode('utf-8')))

 else:

 global errorOccurred

 errorOccurred=True

 outputStream.write(bytearray(json.dumps(asjson,

 indent=4).encode('utf-8')))

 except:

 global errorOccurred

 errorOccurred=True

 outputStream.write(bytearray(json.dumps(asjson,

 indent=4).encode('utf-8')))

You will connect the relationship success for this processor to the SplitJson processor
in the last path we took. The flowfile will be split on issues, coordinates added, the ID
extracted, and the issue sent to Elasticsearch. However, we need to do this 42 times.

138 Building a 311 Data Pipeline

To keep processing pages, you need to connect the success relationship to itself. That's
right; you can connect a processor to itself. When you processed the first page through
this processor, the next page was 2. The issues were sent to SplitJson, and back to this
processor, which said the current page is less than 44 and the next page is 3.

You now have an Elasticsearch index with all of the current issues from SeeClickFix.
However, the number of issues for Bernalillo County is much larger than the set of current
issues – there is an archive. And now that you have a pipeline pulling new issues every
8 hours, you will always be up to date, but you can backfill Elasticsearch with all of the
archived issues as well. Then you will have the full history of issues.

Backfilling data
To backfill the SCF index with historic data only requires the addition of a single
parameter to the params object in the QuerySCF processor. To do that, right-click on
the QuerySCF processor and select copy. Right-click on a blank spot of canvas, and
then select paste. Double-click the copied processor and, in the Settings tab, rename it as
QuerySCFArchive. In the Properties tab, modify the Script Body parameter, changing
the params object to the following code:

param = {'place_url':'bernalillo-county', 'per_page': '100',
'status':'Archived'}

The status parameter was added with the value Archived. Now, connect the
GenerateFlowfile processor to this backfill processor to start it. Then, connect
the processor to the SplitJson processor for the success relationship. This will send
the issues to Elasticsearch. But you need to loop through all the pages, so connect the
processor to the GetEveryPage processor too. This will loop through the archives
and send all the issues to Elasticsearch. Once this pipeline finishes, you can stop the
QuerySCFArchive processor.

When you have a system that is constantly adding new records – like a transactional
system – you will follow this pattern often. You will build a data pipeline to extract the
recent records and extract the new records at a set interval – daily or hourly depending
on how often the system updates or how much in real time you need it to be. Once your
pipeline is working, you will add a series of processors to grab all the historic data and
backfill your warehouse. You may not need to go back to the beginning of time, but in this
case, there were sufficiently few records to make it feasible.

Building a Kibana dashboard 139

You will also follow this pattern if something goes wrong or if you need to populate a new
warehouse. If your warehouse becomes corrupted or you bring a new warehouse online,
you can rerun this backfill pipeline to bring in all the data again, making the new database
complete. But it will only contain current state. The next chapter deals with production
pipelines and will help you solve this problem by improving your pipelines. For now, let's
visualize your new Elasticsearch index in Kibana.

Building a Kibana dashboard
Now that your SeeClickFix data pipeline has loaded data in Elasticsearch, it would be nice
to see the results of the data, as would an analyst. Using Kibana, you can do just that. In
this section, you will build a Kibana dashboard for your data pipeline.

To open Kibana, browse to http://localhost:5601 and you will see the main
window. At the bottom of the toolbar (on the left of the screen; you may need to expand
it), click the management icon at the bottom. You need to select Create new Index
Pattern and enter scf*, as shown in the following screenshot:

Figure 6.4 – Creating the index pattern in Kibana

140 Building a 311 Data Pipeline

When you click the next step, you will be asked to select a Time Filter field name.
Because there are several fields with times in them, and they are in a format that is already
recognizable by Elasticsearch, they will be indexed as such, and you can select a primary
time filter. The field selected will be the default field used in screens such as Discovery
when a bar chart preview of the data is displayed by time, and when you use a time filter
in visualizations or dashboards. I have selected created_at, as shown in the following
screenshot:

Figure 6.5 – Selecting the Time Filter field

Once you have created the index in Kibana, you can move on to visualizations.

Creating visualizations
To create visualizations, select the visualization icon in the toolbar. Select Create
Visualization and you will see a variety of types available, as shown in the following
screenshot:

Building a Kibana dashboard 141

Figure 6.6 – Available visualization types

You will see the Lens type, which is a Beta visualization, as well as Controls and Vega,
which are Experimentals. For now, select the Vertical Bar chart. When asked for a
source, choose scf — this will apply to all visualizations in this chapter. Leave the y axis
as Count, but add a new bucket and select the x axis. For Aggregations, choose Date
Histogram. The field is created_at and the interval will be Monthly. You will see a
chart as shown in the following screenshot (yours may vary):

Figure 6.7 – Bar chart of created_at counts by month

142 Building a 311 Data Pipeline

Save the bar chart and name it scf-bar, or anything that you will be able to associate
with the SeeClickFix data.

Next, select visualization again and choose metric. You will only add a custom label under
the Metrics options. I chose Issues. By doing this, you remove the default count that gets
placed under the numbers in the metric. This visualization is giving us a count of issues
and will change when we apply filters in the dashboard. The configuration is shown in the
following screenshot:

Figure 6.8 – Metrics visualization configuration

Again, save the visualization using any convention, or prefix it with scf, as I have done.

For the next visualization, select a pie chart – which will default to a donut. Under
Buckets, select Split slices. For Aggregations, select Terms. And for Field, select
request_type.title.keyword. Leave the rest of the defaults set. This will give you the top
five titles. The results are shown in the following screenshot:

Building a Kibana dashboard 143

Figure 6.9 – Top five issue titles

While not a visualization, Markdown can add value to your dashboard by providing
some context or a description. Select Markdown from the visualization options. You can
enter Markdown in the left pane and, by clicking the run symbol, see the preview in the
right pane. I have just added an H1, some text, and a bullet list, as shown in the following
screenshot:

Figure 6.10 – Using the Markdown editor

144 Building a 311 Data Pipeline

The last visualization, Map, has an arrow because maps have their own place on the
toolbar, and you can do a lot more with them than the other visualizations. For now, you
can select Map from either location. You will select Create Map, and when prompted for
the index pattern, select scf. Once on the map screen, select Add Layer and the source
will be Documents. This allows you to select an index. The following screenshot shows
what you should see:

Figure 6.11 – Adding a new layer with the source being documents

Building a Kibana dashboard 145

When you select scf as the index pattern, Kibana will recognize the appropriate field
and add the data to the map. Your map will be blank, and you may wonder went wrong.
Kibana sets the time filter to the last 15 minutes, and you do not have data newer than the
last 8 hours. Set the filter to a longer time frame, and the data will appear if the create_
at field is in the window. The results are shown in the following screenshot:

Figure 6.12 – A map visualization from an Elasticsearch index

Now that you have created visualizations from your data, you can now move on to
combining them into a dashboard. The next section will show you how.

146 Building a 311 Data Pipeline

Creating a dashboard
To build a dashboard, select the dashboard icon on the toolbar. You will then select Create
a new dashboard and add visualizations. If this is the first dashboard, you may see text
asking whether you want to add an existing item. Add an item and then, in the search
bar, type scf – or any of the names you used to save your visualizations. Adding them
to the dashboard, you can then position them and resize them. Make sure to save your
dashboard once it is set up. I have built the dashboard shown in the following screenshot:

Figure 6.13 – A SeeClickFix dashboard

Building a Kibana dashboard 147

The dashboard has the Markdown, pie chart, map, metric, and bar chart added. I moved
them around by grabbing the top of the panel and resized them by grabbing the lower-
right corner and dragging. You can also click the gear icon and add a new name for your
panels, so that they do not have the name that you used when you save the visualization.

With your dashboard, you can filter the data and all the visualizations will change. For
example, I have clicked on the Graffiti label in the pie chart and the results are shown in
the following screenshot:

Figure 6.14 – Filtering on Graffiti

148 Building a 311 Data Pipeline

Using filters is where the metric visualization comes in handy. It is nice to know what the
number of records are. You can see that the map and the bar chart changed as well. You
can also filter on the date range. I have selected the last 7 days in the filter, as shown in the
following screenshot:

Figure 6.15 – Filtering by time in a dashboard

The time filter allows you to select Now, Relative, or Absolute. Relative is a number of
days, months, years, and so on from Now, while Absolute allows you to specify a start
and end time on a calendar. The results of the seven-day filter are shown in the following
screenshot:

Building a Kibana dashboard 149

Figure 6.16 – Dashboard with a seven-day filter

The last filter I will show is the map filter. You can select an area or draw a polygon on the
map to filter your dashboard. By clicking on the map tools icon, the options will appear as
shown in the following screenshot:

Figure 6.17 – Tools icon on the map

150 Building a 311 Data Pipeline

Using the Draw bounds to filter data, I drew a rectangle on the map and the results are
shown in the following screenshot:

Figure 6.18 – Filtering data using the map

In the preceding dashboard, you can see the perfect rectangle of points. The map filter is
one of my favorite filters.

Kibana dashboards make your data pipelines useful to non-data engineers. The work you
put into moving and transforming data becomes live data that can be used by analysts
and mangers to explore and learn from the data. Kibana dashboards are also an excellent
way for you, the data engineer, to visualize the data you have extracted, transformed, and
loaded to see whether there are any obvious issues in your data pipeline. They can be a
type of debugging tool.

Summary
In this chapter, you learned how to build a data pipeline using data from a REST API.
You also added a flow to the data pipeline to allow you to backfill the data, or to recreate a
database with all of the data using a single pipeline.

Summary 151

The second half of the chapter provided a basic overview of how to build a dashboard
using Kibana. Dashboards will usually be outside the responsibilities of a data engineer.
In smaller firms, however, this could very well be your job. Furthermore, being able to
quickly build a dashboard can help validate your data pipeline and look for any possible
errors in the data.

In the next chapter, we begin a new section of this book, where you will take the skills you
have learned and improve them by making your pipelines ready for production. You will
learn about deployment, better validation techniques, and other skills needed when you
are running pipelines in a production environment.

Section 2:
Deploying Data

Pipelines in
Production

Section 2 builds on what you have learned and teaches you the features of production
data pipelines. You will learn techniques that are similar to software engineering, such as
versioning, monitoring, and logging. With these skills, you will be able to not only build,
but also manage production data pipelines. Lastly, you will learn how to deploy your data
pipelines in a production environment.

This section comprises the following chapters:

•	 Chapter 7, Features of a Production Data Pipeline

•	 Chapter 8, Version Control Using the NiFi Registry

•	 Chapter 9, Monitoring and Logging Data Pipelines

•	 Chapter 10, Deploying Your Data Pipelines

•	 Chapter 11, Building a Production Data Pipeline

7
Features of a

Production Pipeline
In this chapter, you will learn several features that make a data pipeline ready for
production. You will learn about building data pipelines that can be run multiple times
without changing the results (idempotent). You will also learn what to do if transactions
fail (atomicity). And you will learn about validating data in a staging environment. This
chapter will use a sample data pipeline that I currently run in production.

For me, this pipeline is a bonus, and I am not concerned with errors, or missing data.
Because of this, there are elements missing in this pipeline that should be present in a
mission critical, or production, pipeline. Every data pipeline will have different acceptable
rates of errors – missing data – but in production, your pipelines should have some extra
features that you have yet to learn.

In this chapter, we're going to cover the following main topics:

•	 Staging and validating data

•	 Building idempotent data pipelines

•	 Building atomic data pipelines

156 Features of a Production Pipeline

Staging and validating data
When building production data pipelines, staging and validating data become extremely
important. While you have seen basic data validation and cleaning in Chapter 5, Cleaning,
Transforming, and Enriching Data, in production, you will need a more formal and
automated way of performing these tasks. The next two sections will walk you through
how to accomplish staging and validating data in production.

Staging data
In the NiFi data pipeline examples, data was extracted, and then passed along a series of
connected processors. These processors performed some tasks on the data and sent the
results to the next processor. But what happens if a processor fails? Do you start all over
from the beginning? Depending on the source data, that may be impossible. This is where
staging comes in to play. We will divide staging in to two different types: the staging of
files or database dumps, and the staging of data in a database that is ready to be loaded
into a warehouse.

Staging of files
The first type of staging we will discuss is the staging of data in files following extraction
from a source, usually a transactional database. Let's walk through a common scenario to
see why we would need this type of staging.

You are a data engineering at Widget Co – a company that has disrupted widget making
and is the only online retailer of widgets. Every day, people from all over the world order
widgets on the company website. Your boss has instructed you to build a data pipeline that
takes sales from the website and puts them in a data warehouse every hour so that analysts
can query the data and create reports.

Since sales are worldwide, let's assume the only data transformation required is the
conversion of the local sales date and time to be in GMT. This data pipeline should be
straightforward and is shown in the following screenshot:

Staging and validating data 157

Figure 7.1 – A data pipeline to load widget sales into a warehouse

The preceding data pipeline queries the widget database. It passes the records as a single
flowfile to the SplitText processor, which sends each record to the processor, which
will convert the date and time to GMT. Lastly, it loads the results in the data warehouse.

But what happens when you split the records, and then a date conversion fails? You can
just re-query the database, right? No, you can't, because transactions are happening every
minute and the transaction that failed was canceled and is no longer in the database, or
they changed their order and now want a red widget and not the five blue widgets they
initially ordered. Your marketing team will not be happy because they no longer know
about these changes and cannot plan for how to convert these sales.

The point of the example is to demonstrate that in a transactional database, transactions
are constantly happening, and data is being modified. Running a query produces a set of
results that may be completely different if you run the same query 5 minutes later, and you
have now lost that original data. This is why you need to stage your extracts.

158 Features of a Production Pipeline

If the preceding pipeline example is used for staging, you will end up with a pipeline like
the example shown in the following screenshot:

Figure 7.2 – A data pipeline to load widget sales into a warehouse using staging

The preceding data pipeline is displayed as two graphs. The first graph queries the widget
database and puts the results in a file on disk. This is the staging step. From here, the next
graph will load the data from the staging file, split the records into flowfiles, convert the
dates and times, and finally, load it into the warehouse. If this portion of the pipeline
crashes, or you need to replay your pipeline for any reason, you can then just reload the
CSV by restarting the second half of the data pipeline. You have a copy of the database at
the time of the original query. If, 3 months from now, your warehouse is corrupted, you
could replay your data pipeline with the data at every query, even though the database is
completely different.

Staging and validating data 159

Another benefit of having copies of database extracts in CSV files is that it reduces the
load in terms of replaying your pipeline. If your queries are resource intensive, perhaps
they can only be run at night, or if the systems you query belong to another department,
agency, or company. Instead of having to use their resources again to fix a mistake, you
can just use the copy.

In the Airflow data pipelines you have built up to this point, you have staged your queries.
The way Airflow works encourages good practices. Each task has saved the results to a file,
and then you have loaded that file in the next task. In NiFi, however, your queries have
been sent, usually to the SplitRecords or Text processor, to the next processor in the
pipeline. This is not good practice for running pipelines in production and will no longer
be the case in examples from here on in.

Staging in databases
Staging data in files is helpful during the extract phase of a data pipeline. On the other end
of the pipeline, the load stage, it is better to stage your data in a database, and preferably,
the same database as the warehouse. Let's walk through another example to see why.

You have queried your data widget database and staged the data. The next data pipeline
picks up the data, transforms it, and then loads it into the warehouse. But now what
happens if loading does not work properly? Perhaps records went in and everything looks
successful, but the mapping is wrong, and dates are strings. Notice I didn't say the load
failed. You will learn about handling load failures later in this chapter.

Without actually loading the data into a database, you will only be able to guess what
issues you may experience. By staging, you will load the data into a replica of your data
warehouse. Then you can run validation suites and queries to see whether you get the
results you expect – for example, you could run a select count(*) query from the
table to see whether you get the correct number of records back. This will allow you to
know exactly what issues you may have, or don't have, if all went well.

160 Features of a Production Pipeline

A data pipeline for Widget Co that uses staging at both ends of the pipeline should look
like the pipeline in the following screenshot:

Figure 7.3 – A production using staging at both ends of the pipeline

The data pipeline in the preceding screenshot queries the widget database and stages the
results in a file. The next stage picks up the file and converts the dates and times. The point
of departure from the earlier example is that the data pipeline now loads the data into
a replica of the data warehouse. The new segment of the data pipeline then queries this
replica, performs some validation, and then loads it into the final database or warehouse.

ETL versus ELT
So far, you have seen Extract, Transform, and Load. However, there is a
growing shift toward an Extract, Load, and Transform process. In the ELT
process, data is staged in a database immediately after the extract ion without
any transformations. You handle all of the transformations in the database. This
is very helpful if you are using SQL-based transformation tools. There is no
right or wrong way, only preferences and use cases.

Staging and validating data 161

By staging data at the front and end of your data pipeline, you are now better suited for
handling errors and for validating the data as it moves through your pipeline. Do not
think that these are the only two places where data can be staged, or that data must be
staged in files. You can stage your data after every transformation in your data pipeline.
Doing so will make debugging errors easier and allow you to pick up at any point in the
data pipeline after an error. As your transformations become more time consuming, this
may become more helpful.

You staged the extraction from the widget database in a file, but there is no reason to
prevent you from extracting the data to a relational or noSQL database. Dumping data to
files is slightly less complicated than loading it into a database – you don't need to handle
schemas or build any additional infrastructure.

While staging data is helpful for replaying pipelines, handling errors, and debugging your
pipeline, it is also helpful in the validation stages of your pipeline. In the next section,
you will learn how to use Great Expectations to build validation suites on both file and
database staged data.

Validating data with Great Expectations
With your data staged in either a file or a database, you have the perfect opportunity to
validate it. In Chapter 5, Cleaning, Transforming, and Enriching Data, you used pandas to
perform exploratory data analysis and gain insight into what columns existed, find counts
of null values, look at ranges of values within columns, and examine the data types in
each column. Pandas is powerful and, by using methods such as value_counts and
describe, you can gain a lot of insight into your data, but there are tools that make
validation much cleaner and make your expectations of the data much more obvious.

162 Features of a Production Pipeline

The library you will learn about in this section is Great Expectations. The following is a
screenshot of the Great Expectations home page, where you can join and get involved
with it:

Figure 7.4 – Great Expectations Python library for validating your data, and more

Why Great Expectations? Because with Great Expectations, you can specify human-
readable expectations and let the library handle the implementation. For example, you
can specify that the age column should not have null values, in your code, with the
following line:

expect_column_values_to_not_be_null('age')

Great Expectations will handle the logic behind doing this irrespective of whether
your data is in a DataFrame or in a database. The same expectation will run on either
data context.

Getting started with Great Expectations
Installing Great Expectations can be done with pip3 as shown:

pip3 install great_expectations

Staging and validating data 163

To view the documents that Great Expectations generates, you will also need to have
Jupyter Notebook available on your machine. You can install Notebook with pip3
as well:

pip3 install jupyter

With the requirements installed, you can now set up a project. Create a directory at
$HOME/peoplepipeline and press Enter. You can do this on Linux using the
following commands:

mkdir $HOME/peoplepipeline

cd $HOME/peoplepipeline

Now that you are in the project directory, before you set up Great Expectations, we will
dump a sample of the data we will be working with. Using the code from Chapter 3,
Reading and Writing Files, we will generate 1,000 records relating to people. The code is
as follows:

from faker import Faker

import csv

output=open('people.csv','w')

fake=Faker()

header=['name','age','street','city','state','zip','lng','lat']

mywriter=csv.writer(output)

mywriter.writerow(header)

for r in range(1000):

 mywriter.writerow([fake.name(),fake.random_int(min=18,

 max=80, step=1), fake.street_address(), fake.city(),fake.

 state(),fake.zipcode(),fake.longitude(),fake.latitude()])

output.close()

The preceding code creates a CSV file with records about people. We will put this CSV file
into the project directory.

Now you can set up Great Expectations on this project by using the command-line
interface. The following line will initialize your project:

great_expectations init

164 Features of a Production Pipeline

You will now walk through a series of steps to configure Great Expectations. First, Great
Expectations will ask you whether you are ready to proceed. Your terminal should look
like the following screenshot:

Figure 7.5 – Initializing Great Expectations on a project

Having entered Y and pressed Enter, you will be prompted with a series of questions:

What data would you like Great Expectations to connect
to?

What are you processing your files with?

Enter the path (relative or absolute) of a data file.

Name the new expectation suite [people.warning].

Staging and validating data 165

The answers to the questions are shown in the following screenshot, but it should be
Files, Pandas, where you put your file, and whatever you would like to name it:

Figure 7.6 – Initializing Great Expectations by answering questions

166 Features of a Production Pipeline

When Great Expectations has finished running, it will tell you it's done, give you a path to
the document it has generated, and open the document in your browser. The documents
will look like the following screenshot:

Figure 7.7 – Documentation generated by Great Expectations

The preceding screenshot shows the documentation generated for the Great Expectations
Suite. You can see there are 11 expectations and we have passed all of them. The
expectations are very basic, specifying how many records should exist and what columns
should exist in what order. Also, in the code I specified an age range. So, age has a
minimum and maximum value. Ages have to be greater than 17 and less than 81 to pass
the validation. You can see a sample of the expectations generated by scrolling. I have
shown some of mine in the following screenshot:

Staging and validating data 167

Figure 7.8 – Sample generated expectations

As you can see, the expectations are very rigid – age must never be null, for example. Let's
edit the expectations. You have installed Jupyter Notebook, so you can run the following
command to launch your expectation suite in a single step:

great_expectations suite edit people.validate

168 Features of a Production Pipeline

Your browser will open a Jupyter notebook and should look like the following screenshot:

Figure 7.9 – Your expectation suite in a Jupyter notebook

Some items should stand out in the code – the expectation suite name, and the path to
your data file in the batch_kwargs variable. As you scroll through, you will see the
expectations with headers for their type. If you scroll to the Table_Expectation(s)
header, I will remove the row count expectation by deleting the cell, or by deleting the
code in the cell, as shown in the following screenshot:

Staging and validating data 169

Figure 7.10 – Table Expectation(s)

The other expectation to edit is under the age header. I will remove an expectation,
specifically, the expect_quantile_values_to_be_between expectation. The exact
line is shown in the following screenshot:

Figure 7.11 – Age expectations with the quantile expectations to be removed

You can continue to remove expectations, or you can add new ones, or even just modify
the values of existing expectations. You can find a glossary of available expectations
at https://docs.greatexpectations.io/en/latest/reference/
glossary_of_expectations.html.

https://docs.greatexpectations.io/en/latest/reference/glossary_of_expectations.html
https://docs.greatexpectations.io/en/latest/reference/glossary_of_expectations.html

170 Features of a Production Pipeline

Once you have made all of the changes and are satisfied, you can run the entire notebook
to save the changes to your expectation suite. The following screenshot shows how to do
that – select Cell | Run All:

Figure 7.12 – Saving the changes to your expectation suite by running the notebook

Now that you have an expectation suite, it is time to add it to your pipeline. In the next
two sections, you will learn how to add it alongside your pipeline for use with NiFi or
embed the code into your pipeline for use with Airflow.

Great Expectations outside the pipeline
So far, you have validated data while you edited the expectation suite inside a Jupyter
notebook. You could continue to do that using a library such as Papermill, but that is
beyond the scope of this book. In this section, however, you will create a tap and run it
from NiFi.

Staging and validating data 171

Papermill
Papermill is a library created at Netflix that allows you to create parameterized
Jupyter notebooks and run them from the command line. You can change
parameters and specify an output directory for the resultant notebook. It pairs
well with another Netflix library, Scrapbook. Find them both, along with other
interesting projects, including Hydrogen, at https://github.com/
nteract.

A tap is how Great Expectations creates executable Python files to run against your
expectation suite. You can create a new tap using the command-line interface, as shown:

great_expectations tap new people.validate
peoplevalidatescript.py

The preceding command takes an expectation suite and the name of a Python file to
create. When it runs, it will ask you for a data file. I have pointed it to the people.csv
file that you used in the preceding section when creating the suite. This is the file that the
data pipeline will overwrite as it stages data:

Figure 7.13 – Result of the Python file at the specified location

If you run the tap, you should see that it succeeded, as shown in the following screenshot:

Figure 7.14 – Great Expectation tap run

You are now ready to build a pipeline in NiFi and validate your data using Great
Expectations. The next section will walk you through the process.

https://github.com/nteract
https://github.com/nteract

172 Features of a Production Pipeline

Great Expectations in NiFi
Combining NiFi and Great Expectations requires a few modifications to the tap you
created in the previous section. First, you will need to change all the exits to be 0. If you
have a system.exit(1) exit, NiFi processors will crash because the script failed.
We want the script to close successfully, even if the results are not, because the second
thing you will change are the print statements. Change the print statements to be a
JSON string with a result key and a pass or fail value. Now, even though the script exits
successfully, we will know in NiFi whether it actually passed or failed. The code of the tap
is shown in the following code block, with the modifications in bold:

import sys

from great_expectations import DataContext

context = DataContext("/home/paulcrickard/peoplepipeline/great_
expectations")

suite = context.get_expectation_suite("people.validate")

batch_kwargs = {

 "path": "/home/paulcrickard/peoplepipeline/people.csv",

 "datasource": "files_datasource",

 "reader_method": "read_csv",

}

batch = context.get_batch(batch_kwargs, suite)

results = context.run_validation_operator(

 "action_list_operator", [batch])

if not results["success"]:

 print('{"result":"fail"}')

 sys.exit(0)

print('{"result":"pass"}')

sys.exit(0)

Staging and validating data 173

With the changes to the tap complete, you can now build a data pipeline in NiFi. The
following screenshot is the start of a data pipeline using the tap:

Figure 7.15 – A NiFi data pipeline using Great Expectations

The preceding data pipeline creates 1,000 records and saves it as a CSV file. It then runs
the tap on the data and reads in the result — the pass or fail JSON from the script. Lastly,
it extracts the result and routes the flowfile to either a pass or fail processor. From there,
your data pipeline can continue, or it can log the error. You will walk through the pipeline
in the following steps:

1.	 The data pipeline starts by generating a fake flowfile without any data to trigger
the next processor. You could replace this processor with one that queries your
transactional database, or that reads files from your data lake. I have scheduled
this processor to run every hour.

2.	 Once the empty flowfile is received, the ExecuteStreamCommand processor
calls the loadcsv.py Python script. This file is from Chapter 3, Reading
and Writing Files, and uses Faker to create 1,000 fake people records. The
ExecuteStreamCommand processor will read the output from the script. If you
had print statements, each line would become a flowfile. The script has one output,
and that is {"status":"Complete"}.

174 Features of a Production Pipeline

3.	 To configure the processor to run the script, you can set the Working Directory
to the path of your Python script. Set Command Path to python3 – if you can
run the command with the full path, you do not need to enter it all. Lastly, set
Command Arguments to the name of the Python file – loadcsv.py. When
the processor runs, the output flowfile is shown in the following screenshot:

Figure 7.16 – The flowfile shows the JSON string

4.	 The next processor is also an ExecuteStreamCommand processor. This time, the
script will be your tap. The configuration should be the same as in the previous step,
except Command Argument will be peoplevalidatescript.py. Once the
processor completes, the flowfile will contain JSON with a result of pass or fail.
The pass flowfile is shown in the following screenshot:

Figure 7.17 – Result of the tap, validation passed

5.	 The value of the result is extracted in the next processor – EvaluateJsonPath.
Adding a new property with the plus button, name it result and set the value
to $.result. This will extract the pass or fail value and send it as a
flowfile attribute.

Staging and validating data 175

6.	 The next process is RouteOnAttribute. This processor allows you to create
properties that can be used as a relationship in a connection to another processor,
meaning you can send each property to a different path. Creating two new
properties – pass and fail, the values are shown in the following code snippet:

${result:startsWith('pass')}

${result:startsWith('fail')}

7.	 The preceding command uses the NiFi expression language to read the value of the
result attribute in the flowfile.

8.	 From here, I have terminated the data pipeline at a PutFile processor. But you
would now be able to continue by connecting a pass and fail path to their
respective relationships in the previous processor. If it passed, you could read the
staged file and insert the data into the warehouse.

In this section, you connected Great Expectations to your data pipeline. The tap was
generated using your data, and because of this, the test passed. The pipeline ended with
the file being written to disk. However, you could continue the data pipeline to route
success to a data warehouse. In the real world, your tests will fail on occasion. In the next
section, you will learn how to handle failed tests.

Failing the validation
The validation will always pass because the script we are using generates records that meet
the validations rules. What if we changed the script? If you edit the loadcsv.py script
and change the minimum and maximum age, we can make the validation fail. The edit is
shown as follows:

fake.random_int(min=1, max=100, step=1)

176 Features of a Production Pipeline

This will create records that are below the minimum and above the maximum—hopefully,
because it is random, but 1,000 records should get us there. Once you have edited the
script, you can rerun the data pipeline. The final flowfile should have been routed to the
fail path. Great Expectations creates documents for your validations. If you remember,
you saw them initially when you created the validation suite. Now you will have a record
of both the passed and failed runs. Using your browser, open the documents. The path is
within your project folder. For example, my docs are at the following path:

file:///home/paulcrickard/peoplepipeline/great_expectations/
uncommitted/data_docs/local_site/validations/people/
validate/20200505T145722.862661Z/6f1eb7a06079eb9cab8de404c6faa
b62.html

The documents should show all your validations runs. The documents will look like the
following screenshot:

Figure 7.18 – Results of multiple validation runs

The preceding screenshot shows all of the validation runs. You can see the red x indicating
failures. Click on one of the failed runs to see which expectations were not met. The
results should be that both the minimum and maximum age were not met. You should see
that this is the case, as shown in the following screenshot:

Staging and validating data 177

Figure 7.19 – Age expectations have not been met

In this section, you have created a Great Expectations suite and specified expectations for
your data. Previously, you would have had to do this manually using DataFrames and a
significant amount of code. Now you can use human-readable statements and allow Great
Expectations to do the work. You have created a tap that you can run inside your NiFi data
pipeline — or that you can schedule using Cron or any other tool.

A quick note on Airflow
In the preceding example, you ran the validation suite outside of your pipeline – the script
ran in the pipeline, but was called by a processor. You can also run the code inside the
pipeline without having to call it. In Apache Airflow, you can create a validation task that
has the code from the tap. To handle the failure, you would need to raise an exception.
To do that, import the library in your Airflow code. I have included the libraries that you
need to include on top of your standard boilerplate in the following code block:

import sys

from great_expectations import DataContext

from airflow.exceptions import AirflowException

from airflow import DAG

from airflow.operators.bash_operator import BashOperator

from airflow.operators.python_operator import PythonOperator

178 Features of a Production Pipeline

After importing all of the libraries, you can write your task, as shown in the following
code block:

def validateData():

	 context = DataContext("/home/paulcrickard/peoplepipeline/
great_expectations")

	 suite = context.get_expectation_suite("people.validate")

	 batch_kwargs = {

 	"path": "/home/paulcrickard/peoplepipeline/people.csv",

 	"datasource": "files_datasource",

 	"reader_method": "read_csv",

}

	 batch = context.get_batch(batch_kwargs, suite)

	 results = context.run_validation_operator(

 "action_list_operator", [batch])

	 if not results["success"]:

 		 raise AirflowException("Validation Failed")

The preceding code will throw an error, or it will end if the validation succeeded.
However, choosing to handle the failure is up to you. All you need to do is check whether
results["success"] is True. You can now code the other functions, create the tasks
using PythonOperator, and then set the downstream relationships as you have in all
the other Airflow examples.

The following sections will discuss two other features of a production data pipeline –
idempotence and atomicity.

Building idempotent data pipelines
A crucial feature of a production data pipeline is that it is idempotent. Idempotent is
defined as denoting an element of a set that is unchanged in value when multiplied or
otherwise operated on by itself.

In data science, this means that when your pipeline fails, which is not a matter of if, but
when, it can be rerun and the results are the same. Or, if you accidently click run on your
pipeline three times in a row by mistake, there are not duplicate records – even if you
accidently click run multiple times in a row.

Building atomic data pipelines 179

In Chapter 3, Reading and Writing Files, you created a data pipeline that generated 1,000
records of people and put that data in an Elasticsearch database. If you let that pipeline
run every 5 minutes, you would have 2,000 records after 10 minutes. In this example, the
records are all random and you may be OK. But what if the records were rows queried
from another system?

Every time the pipeline runs, it would insert the same records over and over again. How
you create idempotent data pipelines depends on what systems you are using and how
you want to store your data.

In the SeeClickFix data pipeline from the previous chapter, you queried the SeeClickFix
API. You did not specify any rolling time frame that would only grab the most recent
records, and your backfill code grabbed all the archived issues. If you run this data
pipeline every 8 hours, as it was scheduled, you will grab new issues, but also issues
you already have.

The SeeClickFix data pipeline used the upsert method in Elasticsearch to make the
pipeline idempotent. Using the EvaluteJsonPath processor, you extracted the issue ID
and then used that as the Identifier Attribute in the PutElasticsearchHttp
processor. You also set the Index Operation to upsert. This is the equivalent of using an
update in SQL. No records will be duplicated, and records will only be modified if there
have been changes.

Another way to make the data pipeline idempotent, and one that is advocated by some
functional data engineering advocates, is to create a new index or partition every time
your data pipeline is run. If you named your index with the datetime stamped as a suffix,
you would get a new index with distinct records every time the pipeline runs. This not
only makes the data pipeline idempotent; it creates an immutable object out of your
database indexes. An index will never change; just new indexes will be added.

Building atomic data pipelines
The final feature of a production data pipeline that we will discuss in this chapter is
atomicity. Atomicity means that if a single operation in a transaction fails, then all of
the operations fail. If you are inserting 1,000 records into the database, as you did in
Chapter 3, Reading and Writing Files, if one record fails, then all 1,000 fail.

180 Features of a Production Pipeline

In SQL databases, the database will roll back all the changes if record number 500 fails,
and it will no longer attempt to continue. You are now free to retry the transaction.
Failures can occur for many reasons, some of which are beyond your control. If the
power or the network goes down while you are inserting records, do you want those
records to be saved to the database? You would then need to determine which records in a
transaction succeeded and which failed and then retry only the failed records. This would
be much easier than retrying the entire transaction.

In the NiFi data pipelines you have built, there was no atomicity. In the SeeClickFix
example, each issue was sent as a flowfile and upserted in Elasticsearch. The only atomicity
that existed is that every field in the document (issue) succeeded or failed. But we could
have had a situation where all the issues failed except one, and that would have resulted
in the data pipeline succeeding.

Elasticsearch does not have atomic transactions, so any data pipeline that implements
Elasticsearch would need to handle that within the logic. For example, you could track
every record that is indexed in Elasticsearch as well as every failure relationship. If there
is a failure relationship during the run, you would then delete all the successfully indexed
issues. An example data pipeline is shown in the following screenshot:

Figure 7.20 – Building atomicity into a data pipeline

The preceding data pipeline created two flowfiles; one succeeded and one failed. The
contents of both are put in files on disk. From here, your data pipeline could list the files
in the failed directory. If there was one or more, it could then read the success files and
remove them from Elasticsearch.

Summary 181

This is not elegant, but atomicity is important. Debugging data pipeline failures when the
failure is only partial is extremely difficult and time consuming. The extra work required
to incorporate atomicity is well worth it.

SQL databases have atomicity built into the transactions. Using a library such as
psycopg2, you can roll multiple inserts, updates, or deletes into a single transaction
and guarantee that the results will either be that all operations were successful, or the
transaction failed.

Creating data pipelines that are idempotent and atomic requires additional work when
creating your data pipeline. But without these two features, you will have data pipelines
that will make changes to your results if accidently run multiple times (not idempotent)
or if there are records that are missing (not atomic). Debugging these issues is difficult,
so the time spent on making your data pipelines idempotent and atomic is well spent.

Summary
In this chapter, you learned three key features of production data pipelines: staging and
validation, idempotency, and atomicity. You learned how to use Great Expectations to add
production-grade validation to your data pipeline staged data. You also learned how you
could incorporate idempotency and atomicity into your pipelines. With these skills, you
can build more robust, production-ready pipelines.

In the next chapter, you will learn how to use version control with the NiFi registry.

202 Monitoring Data Pipelines

Monitoring NiFi with the status bar
Much of the information you need is on the status bar. The status bar is below the
component toolbar and looks like the following screenshot:

Figure 9.1 – Component and status toolbars

Starting at the left of the status bar, let's look at what is being monitored:

•	 Active thread: This lets you know how many threads are running. You can get a
sense of tasks and load.

•	 Total queued data: The number of flowfiles and the combined size on disk.

•	 Transmitting remote process groups and not transmitting remote process
groups: You can run NiFi on multiple machines or instances on the same machine
and allow process groups to communicate. These icons tell you whether they are or
are not communicating.

•	 Running components, stopped components, invalid components, and disabled
components: These show you the state of your components. Running does not
necessarily mean that a component is currently processing data, but that it is on and
scheduled to do so.

•	 Up-to-date versioned process groups, locally modified versioned process groups,
stale versioned process groups, locally modified and stale versioned process
groups, and sync failure versioned process groups: This group of icons show the
versioning information of your processor groups. From here you can tell if you have
uncommitted changes or are using older versions.

•	 Last refresh: This lets you know when the data in the toolbar is valid for. The
refresh is usually every five minutes.

The status bar gives you the monitoring information for all of your processors, but there
is also a status toolbar on every processor group and for each processor. You can see
the status of the same metrics in the SCF processor group, as shown in the following
screenshot:

Monitoring NiFi using the GUI 203

Figure 9.2 – Processor group monitoring

The In and Out metrics show if there is data flowing into the process group from another
processor or group. You will learn how to connect processor groups in the next chapter.
The versioning information is not on the toolbar but to the left of the title of the processor
group. The red square on the right of the processor group is a bulletin. This provides
information on errors within the processor group. Hovering over it shows the error, as
shown in the following screenshot:

Figure 9.3 – Looking at the bulletin on a processor group

204 Monitoring Data Pipelines

I currently do not have Elasticsearch running and as a result, the processor that sends data
to Elasticsearch is failing with a connection timeout. If you enter the processor group, you
can see the bulletin on the specific processor, as shown in the following screenshot:

Figure 9.4 – The bulletin on a specific processor

To change the bulletin messages, you can adjust the level in the processor configuration
under Settings. The Bulletin Level dropdown allows you to show more or less based on
severity, as shown in the following screenshot:

Figure 9.5 – Setting the Bulletin Level

Monitoring NiFi using the GUI 205

You can see the bulletin information for all your NiFi processors using the Bulletin
Board, which is accessed from the waffle menu in the upper-right corner of NiFi.
Selecting the Bulletin Board will show all the messages, as shown in the following
screenshot:

Figure 9.6 – Bulletin Board showing all the notices

Within each processor group, every processor also has status information, as shown in the
following screenshot:

Figure 9.7 – Status of a single processor

206 Monitoring Data Pipelines

The In and Out metrics in a processor show how much data (the flowfiles size) has passed
through the processor in the last five minutes.

Using counters
Similar to bulletins, you can create increment- or decrement-counters. Counters don't
tell you that something succeeded or failed, but they can give you an idea of how many
flowfiles are being processed at any point in a data pipeline.

In the SCF processor group, I have inserted an UpdateCounter processor between the
EvaluateJsonPath and ElasticSCF processors. This means that before a flowfile is
inserted into Elasticsearch, the counter will be updated. The flow is shown in the following
screenshot:

Figure 9.8 – The UpdateCounter processor added to the data pipeline

As you can see in the preceding screenshot, 162 flowfiles were sent through the processor.
You will see the results of this later in this section. But first, to configure the processor,
you will need to specify Counter Name and Delta. Delta is the number to increment or
decrement by. I have configured the processor as shown in the following screenshot:

Monitoring NiFi using the GUI 207

Figure 9.9 – Configuration of the UpdateCounter processor

When you have configured the processor and ran the data pipeline, you will have a count.
Earlier, 162 records passed through the data pipeline when I ran it. To see your counters,
click the waffle menu in the top-right corner of the NiFi window and select Counters, as
shown in the following screenshot:

Figure 9.10 – NiFi Counters

The preceding screenshot shows the counts of the counter and an aggregate. If we had
other UpdateCounter processors that updated the same counter, it would aggregate
those values.

208 Monitoring Data Pipelines

Using the GUI is an excellent way to quickly see how your processor groups and
processors are running. But you can also use processors to monitor the data pipeline.

In the previous section, you learned about the NiFi bulletin. You can use background tasks
to monitor NiFi and post that data to the NiFi bulletin using reporting tasks. Reporting
tasks are like processors that run in the background and perform a task. The results will
appear in the bulletin or you can send it to other locations.

To create a reporting task, in the waffle menu, select Controller Settings, then navigate
to the Reporting Task tab. The list should be blank, but you can add a new task using
the plus sign on the right-hand corner of the window. You will see a list of tasks that are
available. Single-click on one to see the description. You should see a list similar to the
following screenshot:

Figure 9.11 – Reporting tasks available in NiFi

For this example, double click the MonitorDiskUsage task. It will appear on the list with
the ability to edit. Click the pencil to edit, set the Threshold to 1%, and set the directory to
your NiFi directory. The configuration will look like the following screenshot:

Monitoring NiFi using the GUI 209

Figure 9.12 – Configuring the MonitorDiskUsage task

You can use a percentage or a value such as 20 gigabytes. I have set it to 1% so that it
will post to the bulletin. I chose the NiFi directory because it contains all the logs and
repositories.

Running the Reporting Task processor, you should see a bulletin in the main NiFi
window. The message will be that the MonitorDiskUsage task exceeded the 1% threshold.
The following screenshot shows the bulletin:

Figure 9.13 – The Reporting Task bulletin

210 Monitoring Data Pipelines

You can create reporting tasks for many other metrics. Using the GUI is useful and
convenient, but you will most likely not be able to sit in front of NiFi watching it all day.
This would be horribly inefficient. A better method would be to have NiFi send you a
message. You can do this using processors. The next section will show you how.

Monitoring NiFi with processors
Instead of relying on watching the NiFi GUI, you can insert a processor into your data
pipeline to report what is happening with the pipeline. For example, you can use the
PutSlack processor to send messages on failures or success.

To send Slack messages, you will need to create an app in your Slack workspace. You can
do this by browsing to https://api.slack.com/apps. Click Create New App, as
shown in the following screenshot:

Figure 9.14 – Creating a new app

Slack will ask you to name your app and then select a workspace, as shown in the
following screenshot:

https://api.slack.com/apps

Monitoring NiFi with processors 211

Figure 9.15 – Specifying a name and workspace for your app

When finished, you will be redirected to the app page. Under the Features heading, click
Incoming Webhooks and turn it on, as shown in the following screenshot:

Figure 9.16 – Activating Incoming Webhooks

You will be asked to select a channel for the webhook. I selected myself so that the channel
becomes a direct message to me. You can create a channel for the data pipeline so that
multiple people can join and see the messages. Once you have completed this step, scroll
to the bottom of the page to see the new webhook. Click the copy button and open NiFi. It
is time to add PutSlack to your data pipeline.

212 Monitoring Data Pipelines

In NiFi, I have opened the SCF processor group. I found the ElasticSCF processor—
the processor that sends the issues in to Elasticsearch. Drag and drop the processor
icon in the control toolbar to the canvas and select PutSlack. Create a connection
between ElasticSCF and PutSlack for the relationship failure, as shown in the following
screenshot:

Figure 9.17 – PutSlack added to the end of the data pipeline

To configure the PutSlack processor, paste the copied URL to the Webhook URL
property. NiFi will hide the URL because it is a sensitive property. The Username property
is whatever you want Slack to display when the message is sent. You can also set an icon
or an emoji. The Webhook Text property is the message that will be sent. You can set
the message to plain text saying that the processor failed, or because the Webhook Text
property accepts the NiFi expression language, you can use a combination of a flowfile
attribute with text. I have configured the processor as shown in the following screenshot:

Monitoring NiFi with processors 213

Figure 9.18 – PutSlack configuration

I used the append method of the NiFi expression language. The statement is as follows:

${id:append(': Record failed Upsert Elasticsearch')}

The preceding statement gets the id property, ${id}, and calls append, :append().
Inside the append() method is the text. The result will be a message like the one shown
in the following screenshot:

Figure 9.19 – Slack direct message from NiFi

The preceding screenshot is my direct messages. You can see that I added the NiFi
integration to the workspace, then received a message from NiFi. The message is the ID of
the SeeClickFix issue and some text saying that it failed. I can now take action.

You can use processors to send emails, write files, or perform many other actions that
you could use to monitor your data pipeline. You can also write your own monitoring
applications outside of NiFi using Python. The next section will cover the NiFi REST API.

214 Monitoring Data Pipelines

Using Python with the NiFi REST API
Using Python and the NiFi REST API, you could write your own monitoring tools, or
wire up a dashboard. The NiFi REST API documentation is located at https://nifi.
apache.org/docs/nifi-docs/rest-api/index.html. You can see all of the
different endpoints by type and some information about each of them. This section will
highlight some of the endpoints that you have covered in this chapter but by using the
GUI.

The first thing we can look at are the system diagnostics. System diagnostics will show you
your resource usage. You can see heap size, threads, repository usage, and several other
metrics. To call the endpoint with requests, you can use the following code:

r=requests.get('http://localhost:9300/nifi-api/system-
diagnostics')

data=r.json()

data['systemDiagnostics']['aggregateSnapshot']['maxHeap']

#'512 MB'

data['systemDiagnostics']['aggregateSnapshot']['totalThreads']

#108

data['systemDiagnostics']['aggregateSnapshot']
['heapUtilization']

#'81.0%'

Other endpoints of interest are the processor groups. Using this endpoint, you can find
basic information about any processor group. You will need to get the ID of the group in
NiFi. You can find this in the URL as the processGroupId parameter. With it, you can
use the process-groups endpoint, as shown in the following code:

pg=requests.get('http://localhost:9300/nifi-api/process-
groups/9466c3ca-4c6d-3884-ac72-af4a27919fb0')

pgdata=pg.json()

pgdata['component']['name']

#'SCF'

pgdata['status']

The status object holds most of the pertinent information that you would find in the
status toolbar. The output is as follows:

{'id': '9466c3ca-4c6d-3884-ac72-af4a27919fb0', 'name': 'SCF',
'statsLastRefreshed': '16:11:16 MDT', 'aggregateSnapshot':
{'id': '9466c3ca-4c6d-3884-ac72-af4a27919fb0', 'name': 'SCF',

https://nifi.apache.org/docs/nifi-docs/rest-api/index.html
https://nifi.apache.org/docs/nifi-docs/rest-api/index.html

Using Python with the NiFi REST API 215

'versionedFlowState': 'LOCALLY_MODIFIED', 'flowFilesIn':
0, 'bytesIn': 0, 'input': '0 (0 bytes)', 'flowFilesQueued':
6481, 'bytesQueued': 18809602, 'queued': '6,481 (17.94 MB)',
'queuedCount': '6,481', 'queuedSize': '17.94 MB', 'bytesRead':
0, 'read': '0 bytes', 'bytesWritten': 0, 'written': '0
bytes', 'flowFilesOut': 0, 'bytesOut': 0, 'output': '0 (0
bytes)', 'flowFilesTransferred': 0, 'bytesTransferred':
0, 'transferred': '0 (0 bytes)', 'bytesReceived': 0,
'flowFilesReceived': 0, 'received': '0 (0 bytes)',
'bytesSent': 0, 'flowFilesSent': 0, 'sent': '0 (0 bytes)',
'activeThreadCount': 0, 'terminatedThreadCount': 0}}

Using the processors endpoint, you can look specifically at a single processor. You can use
the status object to look at the status toolbar information, as shown in the following
code:

p=requests.get('http://localhost:9300/nifi-api/
processors/8b63e4d0-eff2-3093-f4ad-0f1581e56674')

pdata=p.json()

pdata['component']['name']

#'Query SCF - Archive'

pdata['status']

Using the NiFi API, you can even look into the queues and download flowfiles. To get the
contents of a flowfile you need to follow these steps:

1.	 Make a listing request to the queue:

q=requests.post('http://localhost:9300/nifi-api/flowfile-
queues/295fc119-0172-1000-3949-54311cdb478e/listing-
requests')

qdata=q.json()

listid=qdata['listingRequest']['id']

'0172100b-179f-195f-b95c-63ea96d151a3'

2.	 Then you will get the status of the listing request by passing the request (listid):

url="http://localhost:9300/nifi-api/flowfile-
queues/295fc119-0172-1000-3949-54311cdb478e/listing-
requests/"+listid

ff=requests.get(url)

ffdata=ff.json()

ffid=ffdata['listingRequest']['flowFileSummaries'][0]

216 Monitoring Data Pipelines

['uuid']

#'3b2dd0fa-dfbe-458b-83e9-ea5f9dbb578f'

3.	 Lastly, you will call the flowfiles endpoint, pass the flowfile ID (ffid), and then
request the content. The flowfile is JSON, so the result will be JSON:

ffurl="http://localhost:9300/nifi-api/flowfile-
queues/295fc119-0172-1000-3949-54311cdb478e/
flowfiles/"+ffid+"/content"

download=requests.get(ffurl)

download.json()

You now have the contents of an entire flowfile:
{'request_type': {'related_issues_url': 'https://
seeclickfix.com/api/v2/issues?lat=35.18151754051&lng=-
106.689667822892&request_types=17877&sort=distance',
'title': 'Missed Trash Pick Up', 'url': 'https://
seeclickfix.com/api/v2/request_types/17877',
'organization': 'City of Albuquerque', 'id': 17877},
'shortened_url': None, 'rating': 2, 'description': 'Yard
waste in bags', 'created_at': '2020-05-08T17:15:57-
04:00', 'opendate': '2020-05-08', 'media': {'image_
square_100x100': None, 'image_full': None, 'video_
url': None, 'representative_image_url': 'https://
seeclickfix.com/assets/categories/trash-f6b4bb46a3084
21d38fc042b1a74691fe7778de981d59493fa89297f6caa86a1.
png'}, 'private_visibility': False, 'transitions':
{}, 'point': {'coordinates': [-106.689667822892,
35.18151754051], 'type': 'Point'}, 'updated_at':
'2020-05-10T16:31:42-04:00', 'id': 7781316, 'lat':
35.18151754051, 'coords': '35.1815175405,-106.689667823',
'summary': 'Missed Trash Pick Up', 'address': '8609 Tia
Christina Dr Nw Albuquerque NM 87114, United States',
'closed_at': '2020-05-08T17:24:55-04:00', 'lng':
-106.689667822892, 'comment_url': 'https://seeclickfix.
com/api/v2/issues/7781316/comments', 'reporter':
{'role': 'Registered User', 'civic_points': 0, 'avatar':
{'square_100x100': 'https://seeclickfix.com/assets/
no-avatar-100-5e06fcc664c6376bbf654cbd67df857ff81918c5f5c
6a2345226093147382de9.png', 'full': 'https://seeclickfix.
com/assets/no-avatar-100-5e06fcc664c6376bbf654cbd67d
f857ff81918c5f5c6a2345226093147382de9.png'}, 'html_
url': 'https://seeclickfix.com/users/347174', 'name':
'Gmom', 'id': 347174, 'witty_title': ''}, 'flag_url':

Using Python with the NiFi REST API 217

'https://seeclickfix.com/api/v2/issues/7781316/flag',
'url': 'https://seeclickfix.com/api/v2/issues/7781316',
'html_url': 'https://seeclickfix.com/issues/7781316',
'acknowledged_at': '2020-05-08T17:15:58-04:00', 'status':
'Archived', 'reopened_at': None}

4.	 You can clear queues by making a drop request:

e=requests.post('http://localhost:9300/nifi-api/flowfile-
queues/295fc119-0172-1000-3949-54311cdb478e/drop-
requests')

edata=e.json()

5.	 You can pass the listing request ID to the end of the preceding URL to see that it
worked. Or you can open NiFi and browse to the queue and you will see that it is
empty.

6.	 You can read the NiFi bulletin by calling the bulletin board endpoint:

b=requests.get('http://localhost:9300/nifi-api/flow/
bulletin-board')

bdata=b.json()

bdata

The result is a single message saying I do not have Elasticsearch running. The output
is as follows:

{'bulletinBoard': {'bulletins': [{'id': 2520, 'groupId':
'9466c3ca-4c6d-3884-ac72-af4a27919fb0', 'sourceId':
'e5fb7c4b-0171-1000-ac53-9fd365943393', 'timestamp':
'17:15:44 MDT', 'canRead': True, 'bulletin': {'id': 2520,
'category': 'Log Message', 'groupId': '9466c3ca-4c6d-
3884-ac72-af4a27919fb0', 'sourceId': 'e5fb7c4b-0171-1000-
ac53-9fd365943393', 'sourceName': 'ElasticSCF', 'level':
'ERROR', 'message': 'PutElasticsearchHttp[id=e5fb7c4b-
0171-1000-ac53-9fd365943393] Routing to failure due to
exception: Failed to connect to localhost/127.0.0.1:9200:
java.net.ConnectException: Failed to connect to
localhost/127.0.0.1:9200', 'timestamp': '17:15:44
MDT'}}], 'generated': '17:16:20 MDT'}}

218 Monitoring Data Pipelines

7.	 You can also read the counters you created earlier. The following code will send a
get request to the counter endpoint:

c=requests.get('http://localhost:9300/nifi-api/counters')

cdata=c.json()

cdata

In the following code block, you will see that I have added an additional counter:
{'counters': {'aggregateSnapshot': {'generated':
'17:17:17 MDT', 'counters': [{'id': '6b2fdf54-a984-
38aa-8c56-7aa4a544e8a3', 'context': 'UpdateCounter
(01721000-179f-195f-6715-135d1d999e33)', 'name':
'SCFSplit', 'valueCount': 1173, 'value': '1,173'}, {'id':
'b9884362-c70e-3634-8e53-f0151396be0b', 'context': "All
UpdateCounter's", 'name': 'SCFSplit', 'valueCount':
1173, 'value': '1,173'}, {'id': 'fb06d19f-682c-3f85-9ea2-
f12b090c4abd', 'context': "All UpdateCounter's", 'name':
'SCFtoElasticsearch', 'valueCount': 162, 'value': '162'},
{'id': '72790bbc-3115-300d-947c-22d889f15a73', 'context':
'UpdateCounter (295f179f-0172-1000-ee63-c25c545f224e)',
'name': 'SCFtoElasticsearch', 'valueCount': 162, 'value':
'162'}]}}}

8.	 Lastly, you can also get information on your reporting tasks. You can see the results
in the bulletin, but this endpoint allows you to see their state; in this case, I have
them stopped. The following code shows you how:

rp=requests.get('http://localhost:9300/nifi-api/
reporting-tasks/01721003-179f-195f-9cbe-27f0f068b38e')

rpdata=rp.json()

rpdata

The information about the reporting task is as follows:
{'revision': {'clientId': '2924cbec-0172-1000-ab26-
103c63d8f745', 'version': 8}, 'id': '01721003-179f-195f-
9cbe-27f0f068b38e', 'uri': 'http://localhost:9300/
nifi-api/reporting-tasks/01721003-179f-195f-9cbe-
27f0f068b38e', 'permissions': {'canRead': True,
'canWrite': True}, 'bulletins': [], 'component':
{'id': '01721003-179f-195f-9cbe-27f0f068b38e',
'name': 'MonitorDiskUsage', 'type': 'org.apache.nifi.
controller.MonitorDiskUsage', 'bundle': {'group':
'org.apache.nifi', 'artifact': 'nifi-standard-nar',

Using Python with the NiFi REST API 219

'version': '1.12.1'}, 'state': 'STOPPED', 'comments':
'', 'persistsState': False, 'restricted': False,
'deprecated': False, 'multipleVersionsAvailable': False,
'schedulingPeriod': '5 mins', 'schedulingStrategy':
'TIMER_DRIVEN', 'defaultSchedulingPeriod': {'TIMER_
DRIVEN': '0 sec', 'CRON_DRIVEN': '* * * * * ?'},
'properties': {'Threshold': '1%', 'Directory Location':
'/home/paulcrickard/nifi-1.12.1', 'Directory Display
Name': 'MyDrive'}, 'descriptors': {'Threshold': {'name':
'Threshold', 'displayName': 'Threshold', 'description':
'The threshold at which a bulletin will be generated to
indicate that the disk usage of the partition on which
the directory found is of concern', 'defaultValue':
'80%', 'required': True, 'sensitive': False, 'dynamic':
False, 'supportsEl': False, 'expressionLanguageScope':
'Not Supported'}, 'Directory Location': {'name':
'Directory Location', 'displayName': 'Directory
Location', 'description': 'The directory path of
the partition to be monitored.', 'required': True,
'sensitive': False, 'dynamic': False, 'supportsEl':
False, 'expressionLanguageScope': 'Not Supported'},
'Directory Display Name': {'name': 'Directory Display
Name', 'displayName': 'Directory Display Name',
'description': 'The name to display for the directory in
alerts.', 'defaultValue': 'Un-Named', 'required': False,
'sensitive': False, 'dynamic': False, 'supportsEl':
False, 'expressionLanguageScope': 'Not Supported'}},
'validationStatus': 'VALID', 'activeThreadCount': 0,
'extensionMissing': False}, 'operatePermissions':
{'canRead': True, 'canWrite': True}, 'status':
{'runStatus': 'STOPPED', 'validationStatus': 'VALID',
'activeThreadCount': 0}}

With these NiFi endpoints, you can collect information on your system, on process
groups, on processors, and on queues. You can use this information to build your own
monitoring systems or create dashboards. The API has a lot of potential—you could even
call the API using NiFi itself.

220 Monitoring Data Pipelines

Summary
In this chapter, you have learned how to use the NiFi GUI to monitor your data pipelines
using the status bar, the bulletin, and counters. You also learned how to add processors
that can send information to you inside your data pipeline. With the PutSlack
processor, you were able to send yourself direct messages when there was a failure, and
you passed data from the flowfile in the message with the NiFi expression language. Lastly,
you learned how to use the API to write your own monitoring tools and grab the same
data as is in the NiFi GUI—even reading the contents of a single flowfile.

In the next chapter, you will learn how to deploy your production pipelines. You will learn
how to use processor groups, templates, versions, and variables to allow you to import
data pipelines to a production NiFi instance with minimal configuration.

10
Deploying Data

Pipelines
In software engineering, you will usually have development, testing, and production
environments. The testing environment may be called quality control or staging or
some other name, but the idea is the same. You develop in an environment, then push it to
another environment that will be a clone of the production environment and if everything
goes well, then it is pushed into the production environment. The same methodology is
used in data engineering. So far, you have built data pipelines and run them on a single
machine. In this chapter, you will learn methods for building data pipelines that can be
deployed to a production environment.

In this chapter, we're going to cover the following main topics:

•	 Finalizing your data pipelines for production

•	 Using the NiFi variable registry

•	 Deploying your data pipelines

222 Deploying Data Pipelines

Finalizing your data pipelines for production
In the last few chapters, you have learned about the features and methods for creating
production data pipelines. There are still a few more features needed before you can
deploy your data pipelines—backpressure, processor groups with input and output ports,
and funnels. This section will walk you through each one of these features.

Backpressure
In your data pipelines, each processor or task will take different amounts of time to finish.
For example, a database query may return hundreds of thousands of results that are split
into single flowfiles in a few seconds, but the processor that evaluates and modifies the
attributes within the flowfiles may take much longer. It doesn't make sense to dump all
of the data into the queue faster than the downstream processor can actually process it.
Apache NiFi allows you to control the number of flowfiles or the size of the data that is
sent to the queue. This is called backpressure.

To understand how backpressure works, let's make a data pipeline that generates data and
writes it to a file. The data pipeline is shown in the following screenshot:

Figure 10.1 – A data pipeline to generate data and write the flowfiles to a file

Finalizing your data pipelines for production 223

The preceding data pipeline a creates connection between the GenerateFlowFile
processor and the PutFile processor for the success relationship. I have configured
the PutFile processor to write files to /home/paulcrickard/output. The
GenerateFlowFile processor is using the default configuration.

If you run the data pipeline by starting the GenerateFlowFile processor only, you will
see that the queue has 10,000 flowfiles and is red, as shown in the following screenshot:

Figure 10.2 – A full queue with 10,000 flowfiles

If you refresh NiFi, the number of flowfiles in the queue will not increase. It has 10,000
flowfiles and cannot hold anymore. But is 10,000 the maximum number?

224 Deploying Data Pipelines

Queues can be configured just like the processors that feed them. Right-click on the queue
and select Configure. Select the SETTINGS tab, and you will see the following options:

Figure 10.3 – Queue configuration settings

You will notice that Back Pressure Object Threshold is set to 10000 flowfiles and that
Size Threshold is set to 1 GB. The GenerateFlowFile processor set the size of each
flowfile to 0 bytes, so the object threshold was hit before the size threshold. You can test
hitting the size threshold by changing the File Size property in the GenerateFlowFile
processor. I have changed it to 50 MB. When I start the processor, the queue now stops at
21 flowfiles because it has exceeded 1 GB of data. The following screenshot shows the full
queue:

Finalizing your data pipelines for production 225

Figure 10.4 – Queue that has the size threshold

By adjusting Object Threshold or Size Threshold, you can control the amount of data
that gets sent to a queue and create backpressure slowing down an upstream processor.
While loading the queues does not break your data pipeline, it will run much more
smoothly if the data flows in a more even manner.

The next section will zoom out on your data pipelines and show other techniques for
improving the use of processor groups.

Improving processor groups
Up to this point, you have used processor groups to hold a single data pipeline. If you were
to push all of these data pipelines to production, what you would soon realize is that you
have a lot of processors in each processor group doing the same exact task. For example,
you may have several processors that SplitJson used followed by an EvaluateJsonPath
processor that extracts the ID from a flowfile. Or, you might have several processors that
insert flowfiles in to Elasticsearch.

226 Deploying Data Pipelines

You would not have several functions in code that do the exact same thing on different
variables; you would have one that accepted parameters. The same holds true for data
pipelines, and you accomplish this using processor groups with the input and output
ports.

To illustrate how to break data pipelines into logical pieces, let's walk through an example:

1.	 In NiFi, create a processor group and name it Generate Data.

2.	 Inside the processor group, drag the GenerateFlowFile processor to the canvas.
I have set the Custom Text property in the configuration to {"ID":123}.

3.	 Next, drag an output port to the canvas. You will be prompted for Output Port
Name and Send To. I have named it FromGeneratedData and Send To is set to
Local connections.

4.	 Lastly, connect the GenerateFlowfile processor to Output Port. You will
have a warning on the output port that it is invalid because it has no outgoing
connections. We will fix that in the next steps.

5.	 Exit the processor group.

6.	 Create a new processor group and name it Write Data.

7.	 Enter the processor group and drag the EvaluateJsonPath processor to the
canvas. Configure it by creating a property ID with the value of $.{ID}, and set the
Destination property to flowfile-attribute.

8.	 Next, drag the UpdateAttribute processor to the canvas and create a new
property filename and set the value to ${ID}.

9.	 Now, drag the PutFile processor to the canvas. Set the Directory property to any
location you have permissions to edit. I have set mine to /home/paulcrickard/
output.

Finalizing your data pipelines for production 227

10.	 Lastly, drag an Input Port to the canvas and make it the first processor in the data
pipeline. The completed pipeline should look like the following screenshot:

Figure 10.5 – A data pipeline that starts with an input port

228 Deploying Data Pipelines

11.	 Exit the processor group. You should now have two processor groups on the
canvas—Generate Data and Write Data. You can connect these processor
groups just like you do with single processors. When you connect them by dragging
the arrow from Generate Data to Write Data, you will be prompted to select
which ports to connect, as shown in the following screenshot:

Figure 10.6 – Connecting two processor groups

12.	 The default values will work because you only have one output port and one input
port. If you had more, you could use the drop-down menus to select the proper
ports. This is where naming them something besides input and output becomes
important. Make the names descriptive.

13.	 With the processor groups connected, start the Generate Data group only. You
will see the queue fill up with flowfiles. To see how the ports work, enter the Write
Data processor group.

14.	 Start only the incoming data input port. Once it starts running, the downstream
queue will fill with flowfiles.

Finalizing your data pipelines for production 229

15.	 Right-click the queue and select List queue. You can see that the flowfiles are
coming from the Generate Data processor group. You can now start the rest of
the processor.

16.	 As the data pipeline runs, you will have a file, 123, created in your output directory.

You have successfully connected two processor groups using input and output ports. In
production, you can now have a single process group to write data to a file and it can
receive data from any processor group that needs to write data, as shown in the following
screenshot:

Figure 10.7 – Two processor groups utilizing the Write Data processor group

In the preceding data pipeline, I made a copy of Generate Data and configured the
Custom Text property to {"ID":456} and set the run schedule to an hour so that I
would only get one flowfile from each processor—Generate Data and Generate
Data2. Running all of the processor groups, you list the queue and confirm that one
flowfile comes from each processor group, and your output directory now has two files—
123 and 456.

230 Deploying Data Pipelines

Using the NiFi variable registry
When you are building your data pipelines, you are hardcoding variables—with the
exception of some expression language where you extract data from the flowfile. When
you move the data pipeline to production, you will need to change the variables in your
data pipeline, and this can be time consuming and error prone. For example, you will
have a different test database than production. When you deploy your data pipeline to
production, you need to point to production and change the processor. Or you can use the
variable registry.

Using the postgresToelasticsearch processor group from Chapter 4, Working with
Databases, I will modify the data pipeline to use the NiFi variable registry. As a reminder,
the data pipeline is shown in the following screenshot:

Figure 10.8 – A data pipeline to query PostgreSQL and save the results to Elasticsearch

From outside the processor group, right-click on it and select Variables. To add a new
variable, you can click the plus sign and provide a name and a value. These variables are
now associated with the processor group.

Using the NiFi variable registry 231

Just like functions in programming, variables have a scope. Variables in a processor group
are local variables. You can right-click on the NiFi canvas and create a variable, which you
can consider global in scope. I have created two local variables, elastic and index,
and one global, elastic. When I open the variables in the group, it looks like the
following screenshot:

Figure 10.9 – NiFi variable registry

In the preceding screenshot, you can see the scopes. The scope of postgresToelasticsearch
is the processor group, or local variables. The NiFi Flow scope is the global variables.
Because I have two variables named elastic, the local variable takes precedence.

You can now reference these variables using the expression language. In the
PutElasticsearchHttp process, I have set the Elasticsearch URL to ${elastic}
and the Index to ${index}. These will populate with the local variables—http://
localhost:9200 and nifivariable.

232 Deploying Data Pipelines

Running the data pipeline, you can see the results in Elasticsearch. There is now a new
index with the name nifivariable and 1,001 records. The following screenshot shows
the result:

Figure 10.10 – The new index, nifivariable, is the second row

You have now put the finishing touches on production pipelines and have completed all
the steps needed to deploy them. The next section will teach you different ways to deploy
your data pipelines.

Deploying your data pipelines
There are many ways to handle the different environments—development, testing,
production—and how you choose to do that is up to what works best with your business
practices. Having said that, any strategy you take should involve using the NiFi registry.

Using the simplest strategy
The simplest strategy would be to run NiFi over the network and split the canvas into
multiple environments. When you have promoted a process group, you would move it
in to the next environment. When you needed to rebuild a data pipeline, you would add
it back to development and modify it, then update the production data pipeline to the
newest version. Your NiFi instance would look like the following screenshot:

Deploying your data pipelines 233

Figure 10.11 – A single NiFi instance working as DEV, TEST, and PROD

Notice in the preceding screenshot that only PROD has a green checkmark. The DEV
environment created the processor group, then changes were committed, and they were
brought into TEST. If any changes were made, they were committed, and the newest
version was brought in to PROD. To improve the data pipeline later, you would bring the
newest version into DEV and start the process over until PROD has the newest version
as well.

While this will work, if you have the resources to build out a separate NiFi instance,
you should.

234 Deploying Data Pipelines

Using the middle strategy
The middle strategy utilizes the NiFi registry but also adds a production NiFi instance.
I have installed NiFi on another machine, separate from the one I have used through this
book, that is also running the NiFi registry—this could also live on a separate machine.

After launching my new NiFi instance, I added the NiFi registry as shown in the following
screenshot:

Figure 10.12 – Adding the NiFi registry to another NiFi instance

On the development machine, the registry was created using localhost. However, other
machines can connect by specifying the IP address of the host machine. After reading it,
the NiFi instance has access to all the versioned data pipelines.

Drag a processor group to the canvas and select Import. You can now select the processor
group that has been promoted to production, as shown in the following screenshot:

Figure 10.13 – Importing the processor group

Deploying your data pipelines 235

Once you import the processor, it will come over with the variables that were defined in
the development environment. You can overwrite the values of the variables. Once you
change the variables, you will not need to do it again. You can make the changes in the
development environment and update the production environment and the new variables
will stay. The updated variables are shown in the following screenshot:

Figure 10.14 – Updating local variables for production

236 Deploying Data Pipelines

In the development environment, you can change the processor and commit the local
changes. The production environment will now show that there is a new version available,
as shown in the following screenshot:

Figure 10.15 – Production is now no longer using the current version

You can right-click the processor group and select the new version. The following
screenshot shows version 2:

Figure 10.16 – A new version

Deploying your data pipelines 237

After selecting the new version, the production environment is now up to date. The
following screenshot shows the production environment. You can right-click on the
processor group to see that the variable still points to the production values:

Figure 10.17 – Production is up to date

This strategy should work for most users' needs. In this example, I used development and
production environments, but you can add TEST and use the same strategy here, just
change the local variables to point to your test databases.

The preceding strategies used a single NiFi registry, but you can use a registry per
environment.

Using multiple registries
A more advanced strategy for managing development, test, and production would be to
use multiple NiFi registries. In this strategy, you would set up two NiFi registries—one
for development and one for test and production. You would connect the development
environment to the development registry and the test and production environments to the
second registry.

When you have promoted a data pipeline to test, an administrator would use the NiFi CLI
tools to export the data pipeline and import it in to the second NiFi registry. From there,
you could test and promote it to development. You would import the version from the
second registry to the production environment, just like you did in the middle strategy.
This strategy makes mistakes much more difficult to handle as you cannot commit data
pipelines to test and production without manually doing so. This is an excellent strategy
but requires many more resources.

238 Deploying Data Pipelines

Summary
In this chapter, you learned how to finalize your data pipelines for deployment into
production. By using processor groups for specific tasks, much like functions in code, you
could reduce the duplication of processors. Using input and output ports, you connected
multiple processor groups together. To deploy data pipelines, you learned how NiFi
variables could be used to declare global and locally scoped variables.

In the next chapter, you will use all the skills you have learned in this section to create and
deploy a production data pipeline.

11
Building a

Production Data
Pipeline

In this chapter, you will build a production data pipeline using the features and techniques
that you have learned in this section of the book. The data pipeline will be broken into
processor groups that perform a single task. Those groups will be version controlled
and they will use the NiFi variable registry so that they can be deployed in a production
environment.

In this chapter, we're going to cover the following main topics:

•	 Creating a test and production environment

•	 Building a production data pipeline

•	 Deploying a data pipeline in production

240 Building a Production Data Pipeline

Creating a test and production environment
In this chapter, we will return to using PostgreSQL for both the extraction and loading
of data. The data pipeline will require a test and production environment, each of which
will have a staging and a warehouse table. To create the databases and tables, you will use
PgAdmin4.

Creating the databases
To use PgAdmin4, perform the following steps:

1.	 Browse to http://localhostw/pgadmin4/l, enter your username and
password, and then click the Login button. Once logged in, expand the server icon
in the left panel.

2.	 To create the databases, right-click on the databases icon and select Create |
Database. Name the database test.

3.	 Next, you will need to add the tables. To create the staging table, right-click on
Tables | Create | Table. On the General tab, name the table staging. Then, select
the Columns tab. Using the plus sign, create the fields shown in the following
screenshot:

Creating a test and production environment 241

Figure 11.1 – The columns used in the staging table

242 Building a Production Data Pipeline

4.	 Save the table when you are done. You will need to create this table once more for
the test database and twice more for the production database. To save some time,
you can use CREATE Script to do this for you. Right-click on the staging table, and
then select Scripts | CREATE Script, as shown in the following screenshot:

Figure 11.2 – Generating the CREATE script

5.	 A window will open in the main screen with the SQL required to generate the
table. By changing the name from staging to warehouse, you can make the
warehouse table in test, which will be identical to staging. Once you have made the
change, click the play button in the toolbar.

6.	 Lastly, right-click on Databases and create a new database named production.
Use the script to create both the tables.

Now that you have the tables created for the test and production environments, you will
need a data lake.

Creating a test and production environment 243

Populating a data lake
A data lake is usually a place on disk where files are stored. Usually, you will find data
lakes using Hadoop for the Hadoop Distributed File System (HDFS) and the other tools
built on top of the Hadoop ecosystem. In this chapter, we will just drop files in a folder to
simulate how reading from the data lake would work.

To create the data lake, you can use Python and the Faker library. Before you write the
code, create a folder to act as the data lake. I have created a folder named datalake in
my home directory.

To populate the data lake, you will need to write JSON files with information about an
individual. This is similar to the JSON and CSV code you wrote in the first section of this
book. The steps are as follows:

1.	 Import the libraries, set the data lake directory, and set userid to 1. The userid
variable is going to be a primary key, so we need it to be distinct – incrementing will
do that for us:

from faker import Faker

import json

import os

os.chdir("/home/paulcrickard/datalake")

fake=Faker()

userid=1

2.	 Next, create a loop that generates a data object containing the user ID, name, age,
street, city, state, and zip of a fake individual. The fname variable holds the first and
last name of a person without a space in the middle. If you had a space, Linux would
wrap the file in quotes:

for i in range(1000):

 name=fake.name()

 fname=name.replace(" ","-")+'.json'

 data={

 "userid":userid,

 "name":name,

 "age":fake.random_int(min=18, max=101, step=1),

 "street":fake.street_address(),

 "city":fake.city(),

 "state":fake.state(),

244 Building a Production Data Pipeline

 "zip":fake.zipcode()

 }

3.	 Lastly, dump the JSON object and then write it to a file named after the person.
Close the file and let the loop continue:

 datajson=json.dumps(data)

 output=open(fname,'w')

 userid+=1

 output.write(datajson)

 output.close()

Run the preceding code and you will have 1,000 JSON files in your data lake. Now you can
start building the data pipeline.

Building a production data pipeline
The data pipeline you build will do the following:

•	 Read files from the data lake.

•	 Insert the files into staging.

•	 Validate the staging data.

•	 Move staging to the warehouse.

The final data pipeline will look like the following screenshot:

Building a production data pipeline 245

Figure 11.3 – The final version of the data pipeline

We will build the data pipeline processor group by processor group. The first processor
group will read the data lake.

Reading the data lake
In the first section of this book, you read files from NiFi and will do the same here. This
processor group will consist of three processors – GetFile, EvaluateJsonPath, and
UpdateCounter – and an output port. Drag the processors and port to the canvas. In
the following sections, you will configure them.

246 Building a Production Data Pipeline

GetFile
The GetFile processor reads files from a folder, in this case, our data lake. If you were
reading a data lake in Hadoop, you would switch out this processor for the GetHDFS
processor. To configure the processor, specify the input directory; in my case, it is /home/
paulcrickard/datalake. Make sure Keep Source File is set to True. If you wanted
to move the processed files and drop them somewhere else, you could do this as well.
Lastly, I have set File Filter to a regex pattern to match the JSON file extension – ^.*\.
([jJ][sS][oO][nN]??)$. If you leave the default, it will work, but if there are other
files in the folder, NiFi will try to grab them and will fail.

EvaluateJsonPath
The EvaluateJsonPath processor will extract the fields from the JSON and put them
into flowfile attributes. To do so, set the Destination property to flowfile-attribute. Leave
the rest of the properties as the default. Using the plus sign, create a property for each field
in the JSON. The configuration is shown in the following screenshot:

Figure 11.4 – The configuration for the EvaluateJsonPath processor

This would be enough to complete the task of reading from the data lake, but we will add
one more processor for monitoring.

Building a production data pipeline 247

UpdateCounter
This processor allows you to create an increment counter. As flowfiles pass through, we
can hold a count of how many are being processed. This processor does not manipulate or
change any of our data, but will allow us to monitor the progress of the processor group.
We will be able to see the number of FlowFiles that have moved through the processor.
This is a more accurate way than using the GUI display, but it only shows the number of
records in the last 5 minutes. To configure the processor, leave the Delta property set to 1
and set the Counter Name property to datalakerecordsprocessed.

To finish this section of the data pipeline, drag an output port to the canvas and name it
OutputDataLake. Exit the processor group and right-click, select Version, and start
version control. I set Flow Name to ReadDataLake, wrote a short description and
version comments, and then performed a save.

NiFi-Registry
I have created a new bucket named DataLake. To create buckets, you
can browse to the registry at http://localhost:18080/nifi-
registry/. Click the wrench in the right corner and then click the NEW
BUCKET button. Name and save the bucket.

The first processor group is complete. You can use this processor group any time you need
to read from the data lake. The processor group will hand you every file with the fields
extracted. If the data lake changed, you would only need to fix this one processor group to
update all of your data pipelines.

Before continuing down the data pipeline, the next section will take a small diversion to
show how you can attach other processor groups.

Scanning the data lake
The goal of the data pipeline is to read the data lake and put the data in the data
warehouse. But let's assume there is another department at our company that needs to
monitor the data lake for certain people – maybe VIP customers. Instead of building a
new data pipeline, you can just add their task to the ReadDataLake processor group.

248 Building a Production Data Pipeline

The ScanLake processor group has an input port that is connected to the output of
the ReadDataLake processor. It uses the ScanContent processor attached to the
EvaluateJsonPath processor, which is terminated at the PutSlack processor, as
well as sending the data through to an output port. The flow is shown in the following
screenshot:

Figure 11.5 – The ScanLake processor group

The previous chapter used the PutSlack processor and you are already familiar with
the EvaluateJsonPath processor. ScanContent, however, is a new processor. The
ScanContent processor allows you to look at fields in the flowfile content and compare
them to a dictionary file – a file with content on each line that you are looking for. I have
put a single name in a file at /home/paulcrickard/data.txt. I configured the
processor by setting the path as the value of the Dictionary File property. Now, when a
file comes through that contains that name, I will get a message on Slack.

Inserting the data into staging
The data we read was from the data lake and will not be removed, so we do not need to
take any intermediary steps, such as writing data to a file, as we would have done had
the data been from a transactional database. But what we will do is place the data in a
staging table to make sure that everything works as we expect before putting it in the data
warehouse. To insert the data into staging only requires one processor, PutSQL.

Building a production data pipeline 249

PutSQL
The PutSQL processor will allow you to execute an INSERT or UPDATE operation on a
database table. The processor allows you to specify the query in the contents of a flowfile,
or you can hardcode the query to use as a property in the processor. For this example, I
have hardcoded the query in the SQL Statement property, which is shown as follows:

INSERT INTO ${table} VALUES ('${userid}',
'${name}',${age},'${street}','${city}','${state}','${zip}');

The preceding query takes the attributes from the flowfile and passes them into the
query, so while it is hardcoded, it will change based on the flowfiles it receives. You may
have noticed that you have not used ${table} in any of the EvaluateJsonPath
processors. I have declared a variable using the NiFi registry and added it to the processor
group scope. The value of the table will be staging for this test environment, but will
change later when we deploy the data pipeline to production.

You will also need to add a Java Database Connection (JDBC) pool, which you have
done in earlier chapters of this book. You can specify the batch size, the number of records
to retrieve, and whether you want the processor to roll back on failure. Setting Rollback
on Failure to True is how you can create atomicity in your transactions. If a single flowfile
in a batch fails, the processor will stop and nothing else can continue.

I have connected the processor to another UpdateCounter processor. This
processor creates and updates InsertedStaging. The counter should match
datalakerecordsprocessor when everything has finished. The UpdateCounter
processor connects to an output port named OutputStaging.

Querying the staging database
The next processor group is for querying the staging database. Now that the data has been
loaded, we can query the database to make sure all the records have actually made it in.
You could perform other validation steps or queries to see whether the results match what
you would expect – if you have data analysts, they would be a good source of information
for defining these queries. In the following sections, you will query the staging database
and route the results based on whether it meets your criteria.

ExecuteSQLRecord
In the previous processor group, you used the PutSQL processor to insert data into the
database, but in this processor group, you want to perform a select query. The select
query is shown as follows:

select count(*) from ${table}

250 Building a Production Data Pipeline

The preceding query is set as the value of the optional SQL select query property. The
${table} is a NiFi variable registry variable assigned to the processor group and has a
value of staging. You will need to define a JDBC connection and a record writer in the
processor properties. The record writer is a JSON record set writer. The return value of
the processor will be a JSON object with one field – count. This processor is sent to an
EvaluateJsonPath processor to extract the count as recordcount. That processor is
then sent to the next processor.

RouteOnAttribute
The RouteOnAttribute processor allows you to use expressions or values to define
where a flowfile goes. To configure the processor, I have set the Routing strategy to Route
to Property name. I have also created a property named allrecords and set the value
to a NiFi expression, shown as follows:

${recordcount:ge(1000)}

The preceding expression evaluates the recordcount attribute to see whether it is
greater than or equal to 1,000. If it is, it will route on this relationship. I have attached the
output to an output port named OutputQueryStaging.

Validating the staging data
The previous processor group did some validation and you could stop there. However,
Great Expectations is an excellent library for handling validation for you. You learned
about Great Expectations in Chapter 7, Features of a Production Pipeline, but I will cover it
quickly again here.

To use Great Expectations, you need to create a project folder. I have done that in the
following code snippet and initialized Great Expectations:

mkdir staging

great_expectations init

You will be prompted to create your validation suite. Choose Relational database (SQL),
then Postgres, and provide the required information. The prompts will look like the
following screenshot:

Building a production data pipeline 251

Figure 11.6 – Configuring Great Expectations to work with PostgreSQL

When it is finished, Great Expectations will attempt to connect to the database. If
successful, it will provide the URL for your documents. Since the table is empty, it will
not create a very detailed validation suite. You can edit the suite using the following
command:

great_expectations suite edit staging.validation

252 Building a Production Data Pipeline

This will launch a Jupyter notebook with the code for the suite. I have deleted one line that
sets the number of rows between 0 and 0, as shown in the following screenshot:

Figure 11.7 – Editing the Great Expectations suite

After deleting the highlighted line, run all the cells in the notebook. Now you can refresh
your documents and you will see that the expectation on the row number is no longer part
of the suite, as shown in the following screenshot:

Building a production data pipeline 253

Figure 11.8 – Great Expectations documents for the suite

Now that the suite is complete, you need to generate a file that you can run to launch the
validation. Use the following command to create a tap using the staging.validation
suite and output the sv.py file:

great_expectations tap new staging.validation sv.py

Now you can run this file to validate the test database staging table.

The first processor receives flowfiles from an input port that is connected to
the output port of the QueryStaging processor group. It connects to an
ExecuteStreamCommand processor.

ExecuteStreamCommand
The ExecuteStreamCommand will execute a command and listen for output, streaming
the results. Since the sv.py file only prints a single line and exits, there is no stream, but
if your command had multiple outputs, the processor would grab them all as they were
output.

To configure the processor, set the Command Arguments property to sv.py, the
Command Path to Python3, and the working directory to the location of the sv.py file.

254 Building a Production Data Pipeline

The processor connects to an EvaluateJsonPath processor that extracts $.result
and sends it to a RouteOnAttribute processor. I have configured a single property and
accorded it the value pass:

${result:startsWith('pass')}

The preceding expression checks the result attribute to see whether it matches pass. If so,
the processor sends the flowfile to an output port.

Insert Warehouse
You have made it to the last processor group – Insert Warehouse. The data has been
staged and validated successfully and is ready to move to the warehouse. This processor
group uses an ExecuteSQLRecord and a PutSQL processor.

ExecuteSQLRecord
ExecuteSQLProcessor performs a select operation on the staging table. It has a
variable table defined in the NiFi variable registry pointing to staging. The query is a
select * query, as shown:

select * from ${table}

This query is the value of the SQL select query property. You will need to set up a
Database Pooling Connection service and a Record Writer service. Record
Writer will be a JsonRecordSetWriter and you will need to make sure that you
set Output Grouping to One Line per Object. This processor sends the output to the
SplitText processor, which connects to the EvalueJsonPath processor, which is
a direct copy of the one from the ReadDataLake processor group that connects to the
final PutSQL processor.

PutSQL
The PutSQL processor puts all of the data from the staging table into the final data
warehouse table. You can configure the batch size and the rollback on failure properties.
I have set the SQL Statement property to the same as when it was inserted into staging,
except the variable for the table has been changed to warehouse and we set it to
warehouse in the NiFi variable registry. The query is as follows:

INSERT INTO ${warehouse} VALUES ('${userid}',
'${name}',${age},'${street}','${city}','${state}','${zip}');

Deploying a data pipeline in production 255

I have terminated the processor for all relationships as this is the end of the data
pipeline. If you start all the processor groups, you will have data in your staging and
warehouse tables. You can check your counters to see whether the records processed are
the same as the number of records inserted. If everything worked correctly, you can now
deploy your data pipeline to production.

Deploying a data pipeline in production
In the previous chapter, you learned how to deploy data to production, so I will not go
into any great depth here, but merely provide a review. To put the new data pipeline into
production, perform the following steps:

1.	 Browse to your production NiFi instance. I have another instance of NiFi running
on port 8080 on localhost.

2.	 Drag and drop processor groups to the canvas and select Import. Choose the latest
version of the processor groups you just built.

3.	 Modify the variables on the processor groups to point to the database production.
The table names can stay the same.

You can then run the data pipeline and you will see that the data is populated in the
production database staging and warehouse tables.

The data pipeline you just built read files from a data lake, put them into a database table,
ran a query to validate the table, and then inserted them into the warehouse. You could
have built this data pipeline with a handful of processors and been done, but when you
build for production, you will need to provide error checking and monitoring. Spending
the time up front to build your data pipelines properly will save you a lot of time when
something changes or breaks in production. You will be well positioned to debug and
modify your data pipeline.

256 Building a Production Data Pipeline

Summary
In this chapter, you learned how to build and deploy a production data pipeline. You
learned how to create TEST and PRODUCTION environments and built the data pipeline
in TEST. You used the filesystem as a sample data lake and learned how you would read
files from the lake and monitor them as they were processed. Instead of loading data
into the data warehouse, this chapter taught you how to use a staging database to hold
the data so that it could be validated before being loaded into the data warehouse. Using
Great Expectations, you were able to build a validation processor group that would scan
the staging database to determine whether the data was ready to be loaded into the data
warehouse. Lastly, you learned how to deploy the data pipeline into PRODUCTION. With
these skills, you can now fully build, test, and deploy production batch data pipelines.

In the next chapter, you will learn how to build Apache Kafka clusters. Using Kafka, you
will begin to learn how to process data streams. This data is usually near real time, as
opposed to the batch processing you have been currently working with. You will install
and configure the cluster to run on a single machine, or multiple devices if you have them.

Section 3:
Beyond Batch –

Building Real-Time
Data Pipelines

In this section, you will learn about the differences between batch processing – what you
have currently been doing – and stream processing. You will learn about a new set of
tools that allow you to stream and process data in real time. First, you will learn how to
build an Apache Kafka cluster to stream real-time data. To process this data, you will use
an Apache Spark cluster that you will build and deploy. Lastly, you will learn two more
advanced NiFi topics – how to stream data to NiFi from an Internet of Things device using
MiNiFi, and how to cluster NiFi for more processing power.

This section comprises the following chapters:

•	 Chapter 12, Building an Apache Kafka Cluster

•	 Chapter 13, Streaming Data with Kafka

•	 Chapter 14, Data Processing with Apache Spark

•	 Chapter 15, Real-Time Edge Data – Kafka, Spark, and MiNiFi

12
Building a Kafka

Cluster
In this chapter, you will move beyond batch processing – running queries on a complete
set of data – and learn about the tools used in stream processing. In stream processing,
the data may be infinite and incomplete at the time of a query. One of the leading tools
in handling streaming data is Apache Kafka. Kafka is a tool that allows you to send data
in real time to topics. These topics can be read by consumers who process the data. This
chapter will teach you how to build a three-node Apache Kafka cluster. You will also learn
how to create and send messages (produce) and read data from topics (consume).

In this chapter, we're going to cover the following main topics:

•	 Creating ZooKeeper and Kafka clusters

•	 Testing the Kafka cluster

260 Building a Kafka Cluster

Creating ZooKeeper and Kafka clusters
Most tutorials on running applications that can be distributed often only show how to
run a single node and then you are left wondering how you would run this in production.
In this section, you will build a three-node ZooKeeper and Kafka cluster. It will run on
a single machine. However, I will split each instance into its own folder and each folder
simulates a server. The only modification when running on different servers would be to
change localhost to the server IP.

The next chapter will go into detail on the topic of Apache Kafka, but for now it is
enough to understand that Kafka is a tool for building real-time data streams. Kafka was
developed at LinkedIn and is now an Apache project. You can find Kafka on the web at
http://kafka.apache.org. The website is shown in the following screenshot:

Figure 12.1 – Apache Kafka website

http://kafka.apache.org

Creating ZooKeeper and Kafka clusters 261

Kafka requires another application, ZooKeeper, to manage information about the cluster,
to handle discovery, and to elect leaders. You can install and build a ZooKeeper cluster on
your own, but for this example, you will use the ZooKeeper scripts provided by Kafka. To
learn more about ZooKeeper, you can find it at http://zookeeper.apache.org.
The website is shown in the following screenshot:

Figure 12.2 – The Apache ZooKeeper website

The following section will walk you through building the cluster.

Downloading Kafka and setting up the environment
You can download Apache Kafka from the website under the Downloads section – which
is useful if you want a previous version – or you can use wget to download it from the
command line. From your home directory, run the following commands:

Wget https://downloads.apache.org/kafka/2.5.0/kafka_2.12-
2.5.0.tgz

tar -xvzf kafka_2.12-2.5.0.tgz

The preceding commands download the current Kafka version and extract it into the
current directory. Because you will run three nodes, you will need to create three separate
folders for Kafka. Use the following commands to create the directories:

cp kafka_2.12-2.5.0 kafka_1

cp kafka_2.12-2.5.0 kafka_2

cp kafka_2.12-2.5.0 kafka_3

http://zookeeper.apache.org
https://downloads.apache.org/kafka/2.5.0/kafka_2.12-2.5.0.tgz
https://downloads.apache.org/kafka/2.5.0/kafka_2.12-2.5.0.tgz

